版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年北京市第十二中學高三數學試題5月月考注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設為坐標原點,是以為焦點的拋物線上任意一點,是線段上的點,且,則直線的斜率的最大值為()A. B. C. D.12.已知斜率為k的直線l與拋物線交于A,B兩點,線段AB的中點為,則斜率k的取值范圍是()A. B. C. D.3.公元前世紀,古希臘哲學家芝諾發(fā)表了著名的阿基里斯悖論:他提出讓烏龜在跑步英雄阿基里斯前面米處開始與阿基里斯賽跑,并且假定阿基里斯的速度是烏龜的倍.當比賽開始后,若阿基里斯跑了米,此時烏龜便領先他米,當阿基里斯跑完下一個米時,烏龜先他米,當阿基里斯跑完下-個米時,烏龜先他米....所以,阿基里斯永遠追不上烏龜.按照這樣的規(guī)律,若阿基里斯和烏龜的距離恰好為米時,烏龜爬行的總距離為()A.米 B.米C.米 D.米4.中國古代中的“禮、樂、射、御、書、數”合稱“六藝”.“禮”,主要指德育;“樂”,主要指美育;“射”和“御”,就是體育和勞動;“書”,指各種歷史文化知識;“數”,數學.某校國學社團開展“六藝”課程講座活動,每藝安排一節(jié),連排六節(jié),一天課程講座排課有如下要求:“樂”不排在第一節(jié),“射”和“御”兩門課程不相鄰,則“六藝”課程講座不同的排課順序共有()種.A.408 B.120 C.156 D.2405.已知雙曲線的左,右焦點分別為,O為坐標原點,P為雙曲線在第一象限上的點,直線PO,分別交雙曲線C的左,右支于另一點,且,則雙曲線的離心率為()A. B.3 C.2 D.6.已知是等差數列的前項和,若,,則()A.5 B.10 C.15 D.207.已知等差數列的前n項和為,,則A.3 B.4 C.5 D.68.設是虛數單位,若復數,則()A. B. C. D.9.已知等比數列的各項均為正數,設其前n項和,若(),則()A.30 B. C. D.6210.2019年10月17日是我國第6個“扶貧日”,某醫(yī)院開展扶貧日“送醫(yī)下鄉(xiāng)”醫(yī)療義診活動,現有五名醫(yī)生被分配到四所不同的鄉(xiāng)鎮(zhèn)醫(yī)院中,醫(yī)生甲被指定分配到醫(yī)院,醫(yī)生乙只能分配到醫(yī)院或醫(yī)院,醫(yī)生丙不能分配到醫(yī)生甲、乙所在的醫(yī)院,其他兩名醫(yī)生分配到哪所醫(yī)院都可以,若每所醫(yī)院至少分配一名醫(yī)生,則不同的分配方案共有()A.18種 B.20種 C.22種 D.24種11.已知函數的圖像向右平移個單位長度后,得到的圖像關于軸對稱,,當取得最小值時,函數的解析式為()A. B.C. D.12.已知變量,滿足不等式組,則的最小值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設函數,則滿足的的取值范圍為________.14.已知函數,若關于的方程在定義域上有四個不同的解,則實數的取值范圍是_______.15.已知,滿足約束條件,則的最大值為________.16.已知向量=(1,2),=(-3,1),則=______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,三棱臺中,側面與側面是全等的梯形,若,且.(Ⅰ)若,,證明:∥平面;(Ⅱ)若二面角為,求平面與平面所成的銳二面角的余弦值.18.(12分)已知點,直線與拋物線交于不同兩點、,直線、與拋物線的另一交點分別為兩點、,連接,點關于直線的對稱點為點,連接、.(1)證明:;(2)若的面積,求的取值范圍.19.(12分)在數列和等比數列中,,,.(1)求數列及的通項公式;(2)若,求數列的前n項和.20.(12分)山東省2020年高考將實施新的高考改革方案.考生的高考總成績將由3門統(tǒng)一高考科目成績和自主選擇的3門普通高中學業(yè)水平等級考試科目成績組成,總分為750分.其中,統(tǒng)一高考科目為語文、數學、外語,自主選擇的3門普通高中學業(yè)水平等級考試科目是從物理、化學、生物、歷史、政治、地理6科中選擇3門作為選考科目,語、數、外三科各占150分,選考科目成績采用“賦分制”,即原始分數不直接用,而是按照學生分數在本科目考試的排名來劃分等級并以此打分得到最后得分.根據高考綜合改革方案,將每門等級考試科目中考生的原始成績從高到低分為A、B+、B、C+、C、D+、D、E共8個等級。參照正態(tài)分布原則,確定各等級人數所占比例分別為3%、7%、16%、24%、24%、16%、7%、3%.等級考試科目成績計入考生總成績時,將A至E等級內的考生原始成績,依照等比例轉換法則,分別轉換到91-100、81-90、71-80,61-70、51-60、41-50、31-40、21-30八個分數區(qū)間,得到考生的等級成績.舉例說明.某同學化學學科原始分為65分,該學科C+等級的原始分分布區(qū)間為58~69,則該同學化學學科的原始成績屬C+等級.而C+等級的轉換分區(qū)間為61~70,那么該同學化學學科的轉換分為:設該同學化學科的轉換等級分為x,69-6565-58=70-x四舍五入后該同學化學學科賦分成績?yōu)?7.(1)某校高一年級共2000人,為給高一學生合理選科提供依據,對六個選考科目進行測試,其中物理考試原始成績基本服從正態(tài)分布ξ~N(60,12(i)若小明同學在這次考試中物理原始分為84分,等級為B+,其所在原始分分布區(qū)間為82~93,求小明轉換后的物理成績;(ii)求物理原始分在區(qū)間(72,84)的人數;(2)按高考改革方案,若從全省考生中隨機抽取4人,記X表示這4人中等級成績在區(qū)間[61,80]的人數,求X的分布列和數學期望.(附:若隨機變量ξ~N(μ,σ2),則Pμ-σ<ξ<μ+σ=0.68221.(12分)已知數列滿足:對一切成立.(1)求數列的通項公式;(2)求數列的前項和.22.(10分)如圖,三棱柱ABC-A1B1C1中,側面BCC1B1是菱形,AC=BC=2,∠CBB1=,點A在平面BCC1B1上的投影為棱BB1的中點E.(1)求證:四邊形ACC1A1為矩形;(2)求二面角E-B1C-A1的平面角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】試題分析:設,由題意,顯然時不符合題意,故,則,可得:,當且僅當時取等號,故選C.考點:1.拋物線的簡單幾何性質;2.均值不等式.【方法點晴】本題主要考查的是向量在解析幾何中的應用及拋物線標準方程方程,均值不等式的靈活運用,屬于中檔題.解題時一定要注意分析條件,根據條件,利用向量的運算可知,寫出直線的斜率,注意均值不等式的使用,特別是要分析等號是否成立,否則易出問題.2.C【解析】
設,,,,設直線的方程為:,與拋物線方程聯立,由△得,利用韋達定理結合已知條件得,,代入上式即可求出的取值范圍.【詳解】設直線的方程為:,,,,,聯立方程,消去得:,△,,且,,,線段的中點為,,,,,,,,把代入,得,,,故選:【點睛】本題主要考查了直線與拋物線的位置關系,考查了韋達定理的應用,屬于中檔題.3.D【解析】
根據題意,是一個等比數列模型,設,由,解得,再求和.【詳解】根據題意,這是一個等比數列模型,設,所以,解得,所以.故選:D【點睛】本題主要考查等比數列的實際應用,還考查了建模解模的能力,屬于中檔題.4.A【解析】
利用間接法求解,首先對6門課程全排列,減去“樂”排在第一節(jié)的情況,再減去“射”和“御”兩門課程相鄰的情況,最后還需加上“樂”排在第一節(jié),且“射”和“御”兩門課程相鄰的情況;【詳解】解:根據題意,首先不做任何考慮直接全排列則有(種),當“樂”排在第一節(jié)有(種),當“射”和“御”兩門課程相鄰時有(種),當“樂”排在第一節(jié),且“射”和“御”兩門課程相鄰時有(種),則滿足“樂”不排在第一節(jié),“射”和“御”兩門課程不相鄰的排法有(種),故選:.【點睛】本題考查排列、組合的應用,注意“樂”的排列對“射”和“御”兩門課程相鄰的影響,屬于中檔題.5.D【解析】
本道題結合雙曲線的性質以及余弦定理,建立關于a與c的等式,計算離心率,即可.【詳解】結合題意,繪圖,結合雙曲線性質可以得到PO=MO,而,結合四邊形對角線平分,可得四邊形為平行四邊形,結合,故對三角形運用余弦定理,得到,而結合,可得,,代入上式子中,得到,結合離心率滿足,即可得出,故選D.【點睛】本道題考查了余弦定理以及雙曲線的性質,難度偏難.6.C【解析】
利用等差通項,設出和,然后,直接求解即可【詳解】令,則,,∴,,∴.【點睛】本題考查等差數列的求和問題,屬于基礎題7.C【解析】
方法一:設等差數列的公差為,則,解得,所以.故選C.方法二:因為,所以,則.故選C.8.A【解析】
結合復數的除法運算和模長公式求解即可【詳解】∵復數,∴,,則,故選:A.【點睛】本題考查復數的除法、模長、平方運算,屬于基礎題9.B【解析】
根據,分別令,結合等比數列的通項公式,得到關于首項和公比的方程組,解方程組求出首項和公式,最后利用等比數列前n項和公式進行求解即可.【詳解】設等比數列的公比為,由題意可知中:.由,分別令,可得、,由等比數列的通項公式可得:,因此.故選:B【點睛】本題考查了等比數列的通項公式和前n項和公式的應用,考查了數學運算能力.10.B【解析】
分兩類:一類是醫(yī)院A只分配1人,另一類是醫(yī)院A分配2人,分別計算出兩類的分配種數,再由加法原理即可得到答案.【詳解】根據醫(yī)院A的情況分兩類:第一類:若醫(yī)院A只分配1人,則乙必在醫(yī)院B,當醫(yī)院B只有1人,則共有種不同分配方案,當醫(yī)院B有2人,則共有種不同分配方案,所以當醫(yī)院A只分配1人時,共有種不同分配方案;第二類:若醫(yī)院A分配2人,當乙在醫(yī)院A時,共有種不同分配方案,當乙不在A醫(yī)院,在B醫(yī)院時,共有種不同分配方案,所以當醫(yī)院A分配2人時,共有種不同分配方案;共有20種不同分配方案.故選:B【點睛】本題考查排列與組合的綜合應用,在做此類題時,要做到分類不重不漏,考查學生分類討論的思想,是一道中檔題.11.A【解析】
先求出平移后的函數解析式,結合圖像的對稱性和得到A和.【詳解】因為關于軸對稱,所以,所以,的最小值是.,則,所以.【點睛】本題主要考查三角函數的圖像變換及性質.平移圖像時需注意x的系數和平移量之間的關系.12.B【解析】
先根據約束條件畫出可行域,再利用幾何意義求最值.【詳解】解:由變量,滿足不等式組,畫出相應圖形如下:可知點,,在處有最小值,最小值為.故選:B.【點睛】本題主要考查簡單的線性規(guī)劃,運用了數形結合的方法,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
當時,函數單調遞增,當時,函數為常數,故需滿足,且,解得答案.【詳解】,當時,函數單調遞增,當時,函數為常數,需滿足,且,解得.故答案為:.【點睛】本題考查了根據函數單調性解不等式,意在考查學生對于函數性質的靈活運用.14.【解析】
由題意可在定義域上有四個不同的解等價于關于原點對稱的函數與函數的圖象有兩個交點,運用參變分離和構造函數,進而借助導數分析單調性與極值,畫出函數圖象,即可得到所求范圍.【詳解】已知定義在上的函數若在定義域上有四個不同的解等價于關于原點對稱的函數與函數f(x)=lnx-x(x>0)的圖象有兩個交點,聯立可得有兩個解,即可設,則,進而且不恒為零,可得在單調遞增.由可得時,單調遞減;時,單調遞增,即在處取得極小值且為作出的圖象,可得時,有兩個解.故答案為:【點睛】本題考查利用利用導數解決方程的根的問題,還考查了等價轉化思想與函數對稱性的應用,屬于難題.15.【解析】
根據題意,畫出可行域,將目標函數看成可行域內的點與原點距離的平方,利用圖象即可求解.【詳解】可行域如圖所示,易知當,時,的最大值為.故答案為:9.【點睛】本題考查了利用幾何法解決非線性規(guī)劃問題,屬于中檔題.16.-6【解析】
由可求,然后根據向量數量積的坐標表示可求.【詳解】∵=(1,2),=(-3,1),∴=(-4,-1),則=1×(-4)+2×(-1)=-6故答案為-6【點睛】本題主要考查了向量數量積的坐標表示,屬于基礎試題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(Ⅰ)見解析;(Ⅱ).【解析】試題分析:(Ⅰ)連接,由比例可得∥,進而得線面平行;(Ⅱ)過點作的垂線,建立空間直角坐標系,不妨設,則求得平面的法向量為,設平面的法向量為,由求二面角余弦即可.試題解析:(Ⅰ)證明:連接,梯形,,易知:;又,則∥;平面,平面,可得:∥平面;(Ⅱ)側面是梯形,,,,則為二面角的平面角,;均為正三角形,在平面內,過點作的垂線,如圖建立空間直角坐標系,不妨設,則,故點,;設平面的法向量為,則有:;設平面的法向量為,則有:;,故平面與平面所成的銳二面角的余弦值為.18.(1)見解析;(2).【解析】
(1)設點、,求出直線、的方程,與拋物線的方程聯立,求出點、的坐標,利用直線、的斜率相等證明出;(2)設點到直線、的距離分別為、,求出,利用相似得出,可得出的邊上的高,并利用弦長公式計算出,即可得出關于的表達式,結合不等式可解出實數的取值范圍.【詳解】(1)設點、,則,直線的方程為:,由,消去并整理得,由韋達定理可知,,,代入直線的方程,得,解得,同理,可得,,,,代入得,因此,;(2)設點到直線、的距離分別為、,則,由(1)知,,,,,,同理,得,,由,整理得,由韋達定理得,,,得,設點到直線的高為,則,,,,解得,因此,實數的取值范圍是.【點睛】本題考查直線與直線平行的證明,考查實數的取值范圍的求法,考查拋物線、直線方程、韋達定理、弦長公式、直線的斜率等基礎知識,考查運算求解能力,考查數形結合思想,是難題.19.(1),(2)【解析】
(1)根據與可求得,再根據等比數列的基本量求解即可.(2)由(1)可得,再利用錯位相減求和即可.【詳解】解:(1)依題意,,設數列的公比為q,由,可知,由,得,又,則,故,又由,得.(2)依題意.,①則,②①-②得,即,故.【點睛】本題主要考查了等比數列的基本量求解以及錯位相減求和等.屬于中檔題.20.(1)(i)83.;(ii)272.(2)見解析.【解析】
(1)根據原始分數分布區(qū)間及轉換分區(qū)間,結合所給示例,即可求得小明轉換后的物理成績;根據正態(tài)分布滿足N60,122(2)根據各等級人數所占比例可知在區(qū)間61,80內的概率為25,由二項分布即可求得X【詳解】(1)(i)設小明轉換后的物理等級分為x,93-8484-82求得x≈82.64.小明轉換后的物
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《外國檔案管理》課件
- 肇慶醫(yī)學高等??茖W?!墩衅概c面試技巧》2023-2024學年第一學期期末試卷
- 2024有房產離婚協議范本及財產保密協議3篇
- 高科技窗簾知識培訓課件
- 農民農藥知識培訓課件
- 網絡游戲銷售工作總結
- 倉鼠養(yǎng)鼠知識培訓課件
- 2024年行政流程優(yōu)化協議3篇
- 舞蹈演藝場所衛(wèi)生規(guī)范
- 環(huán)保行業(yè)工程師工作心得分享
- 2025年度愛讀書學長主辦的讀書挑戰(zhàn)賽組織合同
- 2024年滄州經濟開發(fā)區(qū)招聘社區(qū)工作者筆試真題
- 2025年安徽省銅陵市公安局交警支隊招聘交通輔警14人歷年高頻重點提升(共500題)附帶答案詳解
- 零碳智慧園區(qū)解決方案
- 2025年林權抵押合同范本
- 服務推廣合同協議(2025年)
- 2024年北師大版四年級數學上學期學業(yè)水平測試 期末卷(含答案)
- 2024年高考物理一輪復習講義(新人教版):第七章動量守恒定律
- 人教版八年級上學期物理期末復習(壓軸60題40大考點)
- 企業(yè)環(huán)保知識培訓課件
- 浙江省寧波市慈溪市2023-2024學年高三上學期語文期末測試試卷
評論
0/150
提交評論