天津河北區(qū)市級名校2023-2024學年中考試題猜想數學試卷含解析_第1頁
天津河北區(qū)市級名校2023-2024學年中考試題猜想數學試卷含解析_第2頁
天津河北區(qū)市級名校2023-2024學年中考試題猜想數學試卷含解析_第3頁
天津河北區(qū)市級名校2023-2024學年中考試題猜想數學試卷含解析_第4頁
天津河北區(qū)市級名校2023-2024學年中考試題猜想數學試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

天津河北區(qū)市級名校2023-2024學年中考試題猜想數學試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.下面計算中,正確的是()A.(a+b)2=a2+b2B.3a+4a=7a2C.(ab)3=ab3D.a2?a5=a72.如圖,若a∥b,∠1=60°,則∠2的度數為()A.40° B.60° C.120° D.150°3.已知關于x的二次函數y=x2﹣2x﹣2,當a≤x≤a+2時,函數有最大值1,則a的值為()A.﹣1或1 B.1或﹣3 C.﹣1或3 D.3或﹣34.如圖是嬰兒車的平面示意圖,其中AB∥CD,∠1=120°,∠3=40°,那么∠2的度數為()A.80° B.90° C.100° D.102°5.2018年我市財政計劃安排社會保障和公共衛(wèi)生等支出約1800000000元支持民生幸福工程,數1800000000用科學記數法表示為()A.18×108B.1.8×108C.1.8×109D.0.18×10106.已知m=,n=,則代數式的值為()A.3 B.3 C.5 D.97.近似數精確到()A.十分位 B.個位 C.十位 D.百位8.如圖是由幾個相同的小正方體搭成的一個幾何體,它的俯視圖是()A.B.C.D.9.-2的倒數是()A.-2 B. C. D.210.下列命題中錯誤的有()個(1)等腰三角形的兩個底角相等(2)對角線相等且互相垂直的四邊形是正方形(3)對角線相等的四邊形為矩形(4)圓的切線垂直于半徑(5)平分弦的直徑垂直于弦A.1B.2C.3D.411.如圖,BD∥AC,BE平分∠ABD,交AC于點E,若∠A=40°,則∠1的度數為()A.80° B.70° C.60° D.40°12.在中,,,,則的值是()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.若關于x的方程(k﹣1)x2﹣4x﹣5=0有實數根,則k的取值范圍是_____.14.從三角形(非等腰三角形)一個頂點引出一條射線與對邊相交,該頂點與該交點間的線段把這個三角形分割成兩個小三角形,如果其中一個小三角形是等腰三角形,另一個與原三角形相似,那么我們把這條線段叫做這個三角形的完美分割線,如圖,在△ABC中,DB=1,BC=2,CD是△ABC的完美分割線,且△ACD是以CD為底邊的等腰三角形,則CD的長為_____.15.比較大?。篲____1(填“<”或“>”或“=”).16.三人中有兩人性別相同的概率是_____________.17.在數學課上,老師提出如下問題:尺規(guī)作圖:確定圖1中所在圓的圓心.已知:.求作:所在圓的圓心.曈曈的作法如下:如圖2,(1)在上任意取一點,分別連接,;(2)分別作弦,的垂直平分線,兩條垂直平分線交于點.點就是所在圓的圓心.老師說:“曈曈的作法正確.”請你回答:曈曈的作圖依據是_____.18.關于x的一元二次方程x2+2x+k=0有兩個不相等的實數根,則k的取值范圍是_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖①,在四邊形ABCD中,AC⊥BD于點E,AB=AC=BD,點M為BC中點,N為線段AM上的點,且MB=MN.(1)求證:BN平分∠ABE;(2)若BD=1,連結DN,當四邊形DNBC為平行四邊形時,求線段BC的長;(3)如圖②,若點F為AB的中點,連結FN、FM,求證:△MFN∽△BDC.20.(6分)已知:如圖所示,在中,,,求和的度數.21.(6分)如圖,矩形ABCD繞點C順時針旋轉90°后得到矩形CEFG,連接DG交EF于H,連接AF交DG于M;(1)求證:AM=FM;(2)若∠AMD=a.求證:=cosα.22.(8分)已知,數軸上三個點A、O、P,點O是原點,固定不動,點A和B可以移動,點A表示的數為,點B表示的數為.(1)若A、B移動到如圖所示位置,計算的值.(2)在(1)的情況下,B點不動,點A向左移動3個單位長,寫出A點對應的數,并計算.(3)在(1)的情況下,點A不動,點B向右移動15.3個單位長,此時比大多少?請列式計算.23.(8分)已知:如圖所示,拋物線y=﹣x2+bx+c與x軸的兩個交點分別為A(1,0),B(3,0)(1)求拋物線的表達式;(2)設點P在該拋物線上滑動,且滿足條件S△PAB=1的點P有幾個?并求出所有點P的坐標.24.(10分)已知是上一點,.如圖①,過點作的切線,與的延長線交于點,求的大小及的長;如圖②,為上一點,延長線與交于點,若,求的大小及的長.25.(10分)計算:()﹣2﹣+(﹣2)0+|2﹣|26.(12分)如圖,四邊形ABCD內接于⊙O,對角線AC為⊙O的直徑,過點C作AC的垂線交AD的延長線于點E,點F為CE的中點,連接DB,DC,DF.求∠CDE的度數;求證:DF是⊙O的切線;若AC=DE,求tan∠ABD的值.27.(12分)拋物線經過A(-1,0)、C(0,-3)兩點,與x軸交于另一點B.求此拋物線的解析式;已知點D在第四象限的拋物線上,求點D關于直線BC對稱的點D’的坐標;在(2)的條件下,連結BD,問在x軸上是否存在點P,使,若存在,請求出P點的坐標;若不存在,請說明理由.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】

直接利用完全平方公式以及合并同類項法則、積的乘方運算法則分別化簡得出答案.【詳解】A.

(a+b)2=a2+b2+2ab,故此選項錯誤;B.

3a+4a=7a,故此選項錯誤;C.

(ab)3=a3b3,故此選項錯誤;D.

a2a5=a7,正確。故選:D.【點睛】本題考查了冪的乘方與積的乘方,合并同類項,同底數冪的乘法,完全平方公式,解題的關鍵是掌握它們的概念進行求解.2、C【解析】如圖:∵∠1=60°,∴∠3=∠1=60°,又∵a∥b,∴∠2+∠3=180°,∴∠2=120°,故選C.點睛:本題考查了平行線的性質,對頂角相等的性質,熟記性質是解題的關鍵.平行線的性質定理:兩直線平行,同位角相等,內錯角相等,同旁內角互補,兩條平行線之間的距離處處相等.3、A【解析】分析:詳解:∵當a≤x≤a+2時,函數有最大值1,∴1=x2-2x-2,解得:,即-1≤x≤3,∴a=-1或a+2=-1,∴a=-1或1,故選A.點睛:本題考查了求二次函數的最大(小)值的方法,注意:只有當自變量x在整個取值范圍內,函數值y才在頂點處取最值,而當自變量取值范圍只有一部分時,必須結合二次函數的增減性及對稱軸判斷何處取最大值,何處取最小值.4、A【解析】分析:根據平行線性質求出∠A,根據三角形內角和定理得出∠2=180°∠1?∠A,代入求出即可.詳解:∵AB∥CD.∴∠A=∠3=40°,∵∠1=60°,∴∠2=180°∠1?∠A=80°,故選:A.點睛:本題考查了平行線的性質:兩直線平行,內錯角相等.三角形內角和定理:三角形內角和為180°.5、C【解析】

科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>1時,n是正數;當原數的絕對值<1時,n是負數.【詳解】解:1800000000=1.8×109,故選:C.【點睛】此題考查科學記數法的表示方法.科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.6、B【解析】

由已知可得:,=.【詳解】由已知可得:,原式=故選:B【點睛】考核知識點:二次根式運算.配方是關鍵.7、C【解析】

根據近似數的精確度:近似數5.0×102精確到十位.故選C.考點:近似數和有效數字8、D【解析】試題分析:俯視圖是從上面看到的圖形.從上面看,左邊和中間都是2個正方形,右上角是1個正方形,故選D.考點:簡單組合體的三視圖9、B【解析】

根據倒數的定義求解.【詳解】-2的倒數是-故選B【點睛】本題難度較低,主要考查學生對倒數相反數等知識點的掌握10、D【解析】分析:根據等腰三角形的性質、正方形的判定定理、矩形的判定定理、切線的性質、垂徑定理判斷即可.詳解:等腰三角形的兩個底角相等,(1)正確;對角線相等、互相平分且互相垂直的四邊形是正方形,(2)錯誤;對角線相等的平行四邊形為矩形,(3)錯誤;圓的切線垂直于過切點的半徑,(4)錯誤;平分弦(不是直徑)的直徑垂直于弦,(5)錯誤.故選D.點睛:本題考查的是命題的真假判斷,正確的命題叫真命題,錯誤的命題叫做假命題.判斷命題的真假關鍵是要熟悉課本中的性質定理.11、B【解析】

根據平行線的性質得到根據BE平分∠ABD,即可求出∠1的度數.【詳解】解:∵BD∥AC,∴∵BE平分∠ABD,∴故選B.【點睛】本題考查角平分線的性質和平行線的性質,熟記它們的性質是解題的關鍵.12、D【解析】

首先根據勾股定理求得AC的長,然后利用正弦函數的定義即可求解.【詳解】∵∠C=90°,BC=1,AB=4,

∴,∴,故選:D.【點睛】本題考查了三角函數的定義,求銳角的三角函數值的方法:利用銳角三角函數的定義,轉化成直角三角形的邊長的比.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】當k?1=0,即k=1時,原方程為?4x?5=0,解得:x=?,∴k=1符合題意;當k?1≠0,即k≠1時,有,解得:k?且k≠1.綜上可得:k的取值范圍為k?.故答案為k?.14、【解析】

設AB=x,利用△BCD∽△BAC,得=,列出方程即可解決問題.【詳解】∵△BCD∽△BAC,∴=,設AB=x,∴22=x,∵x>0,∴x=4,∴AC=AD=4-1=3,∵△BCD∽△BAC,∴==,∴CD=.故答案為【點睛】本題考查相似三角形的判定和性質、等腰三角形的性質等知識,解題的關鍵是利用△BCD∽△BAC解答.15、<【解析】

∵≈0.62,0.62<1,∴<1;故答案為<.16、1【解析】分析:由題意和生活實際可知:“三個人中,至少有兩個人的性別是相同的”即可得到所求概率為1.詳解:∵三人的性別存在以下可能:(1)三人都是“男性”;(2)三人都是“女性”;(3)三人的性別是“2男1女”;(4)三人的性別是“2女1男”,∴三人中至少有兩個人的性別是相同的,∴P(三人中有二人性別相同)=1.點睛:列出本題中所有的等可能結果是解題的關鍵.17、①線段垂直平分線上的點到線段兩端點的距離相等②圓的定義(到定點的距離等于定長的點的軌跡是圓)【解析】

(1)在上任意取一點,分別連接,;(2)分別作弦,的垂直平分線,兩條垂直平分線交于點.點就是所在圓的圓心.【詳解】解:根據線段的垂直平分線的性質定理可知:,所以點是所在圓的圓心(理由①線段垂直平分線上的點到線段兩端點的距離相等②圓的定義(到定點的距離等于定長的點的軌跡是圓):)故答案為①線段垂直平分線上的點到線段兩端點的距離相等②圓的定義(到定點的距離等于定長的點的軌跡是圓)【點睛】本題考查作圖﹣復雜作圖、線段的垂直平分線的性質等知識,解題的關鍵是靈活運用所學知識解決問題,屬于中考常考題型.18、k<1【解析】

根據一元二次方程根的判別式結合題意進行分析解答即可.【詳解】∵關于x的一元二次方程x2+2x+k=0有兩個不相等的實數根,∴△=22解得:k<1.故答案為:k<1.【點睛】熟知“在一元二次方程ax2+bx+c=0(a≠0)三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)證明見解析;(2);(3)證明見解析.【解析】分析:(1)由AB=AC知∠ABC=∠ACB,由等腰三角形三線合一知AM⊥BC,從而根據∠MAB+∠ABC=∠EBC+∠ACB知∠MAB=∠EBC,再由△MBN為等腰直角三角形知∠EBC+∠NBE=∠MAB+∠ABN=∠MNB=45°可得證;(2)設BM=CM=MN=a,知DN=BC=2a,證△ABN≌△DBN得AN=DN=2a,Rt△ABM中利用勾股定理可得a的值,從而得出答案;(3)F是AB的中點知MF=AF=BF及∠FMN=∠MAB=∠CBD,再由即可得證.詳解:(1)∵AB=AC,∴∠ABC=∠ACB,∵M為BC的中點,∴AM⊥BC,在Rt△ABM中,∠MAB+∠ABC=90°,在Rt△CBE中,∠EBC+∠ACB=90°,∴∠MAB=∠EBC,又∵MB=MN,∴△MBN為等腰直角三角形,∴∠MNB=∠MBN=45°,∴∠EBC+∠NBE=45°,∠MAB+∠ABN=∠MNB=45°,∴∠NBE=∠ABN,即BN平分∠ABE;(2)設BM=CM=MN=a,∵四邊形DNBC是平行四邊形,∴DN=BC=2a,在△ABN和△DBN中,∵,∴△ABN≌△DBN(SAS),∴AN=DN=2a,在Rt△ABM中,由AM2+MB2=AB2可得(2a+a)2+a2=1,解得:a=±(負值舍去),∴BC=2a=;(3)∵F是AB的中點,∴在Rt△MAB中,MF=AF=BF,∴∠MAB=∠FMN,又∵∠MAB=∠CBD,∴∠FMN=∠CBD,∵,∴,∴△MFN∽△BDC.點睛:本題主要考查相似形的綜合問題,解題的關鍵是掌握等腰三角形三線合一的性質、直角三角形和平行四邊形的性質及全等三角形與相似三角形的判定與性質等知識點.20、,.【解析】

根據等腰三角形的性質即可求出∠B,再根據三角形外角定理即可求出∠C.【詳解】在中,,∵,在三角形中,,又∵,在三角形中,∴.【點睛】此題主要考查等腰三角形的性質,解題的關鍵是熟知等邊對等角.21、(1)見解析;(2)見解析.【解析】

(1)由旋轉性質可知:AD=FG,DC=CG,可得∠CGD=45°,可求∠FGH=∠FHG=45°,則HF=FG=AD,所以可證△ADM≌△MHF,結論可得.(2)作FN⊥DG垂足為N,且MF=FG,可得HN=GN,且DM=MH,可證2MN=DG,由第一問可得2MF=AF,由cosα=cos∠FMG=,代入可證結論成立【詳解】(1)由旋轉性質可知:CD=CG且∠DCG=90°,∴∠DGC=45°從而∠DGF=45°,∵∠EFG=90°,∴HF=FG=AD又由旋轉可知,AD∥EF,∴∠DAM=∠HFM,又∵∠DMA=∠HMF,∴△ADM≌△FHM∴AM=FM(2)作FN⊥DG垂足為N∵△ADM≌△MFH∴DM=MH,AM=MF=AF∵FH=FG,FN⊥HG∴HN=NG∵DG=DM+HM+HN+NG=2(MH+HN)∴MN=DG∵cos∠FMG=∴cos∠AMD=∴=cosα【點睛】本題考查旋轉的性質,矩形的性質,全等三角形的判定,三角函數,關鍵是構造直角三角形.22、(1)a+b的值為2;(2)a的值為3,b|a|的值為3;(1)b比a大27.1.【解析】

(1)根據數軸即可得到a,b數值,即可得出結果.(2)由B點不動,點A向左移動1個單位長,可得a=3,b=2,即可求解.(1)點A不動,點B向右移動15.1個單位長,所以a=10,b=17.1,再b-a即可求解.【詳解】(1)由圖可知:a=10,b=2,∴a+b=2故a+b的值為2.(2)由B點不動,點A向左移動1個單位長,可得a=3,b=2∴b|a|=b+a=23=3故a的值為3,b|a|的值為3.(1)∵點A不動,點B向右移動15.1個單位長∴a=10,b=17.1∴ba=17.1(10)=27.1故b比a大27.1.【點睛】本題主要考查了數軸,關鍵在于數形結合思想.23、(1)y=﹣x2+4x﹣3;(2)滿足條件的P點坐標有3個,它們是(2,1)或(2+,﹣1)或(2﹣,﹣1).【解析】

(1)由于已知拋物線與x軸的交點坐標,則可利用交點式求出拋物線解析式;(2)根據二次函數圖象上點的坐標特征,可設P(t,-t2+4t-3),根據三角形面積公式得到?2?|-t2+4t-3|=1,然后去絕對值得到兩個一元二次方程,再解方程求出t即可得到P點坐標.【詳解】解:(1)拋物線解析式為y=﹣(x﹣1)(x﹣3)=﹣x2+4x﹣3;(2)設P(t,﹣t2+4t﹣3),因為S△PAB=1,AB=3﹣1=2,所以?2?|﹣t2+4t﹣3|=1,當﹣t2+4t﹣3=1時,t1=t2=2,此時P點坐標為(2,1);當﹣t2+4t﹣3=﹣1時,t1=2+,t2=2﹣,此時P點坐標為(2+,﹣1)或(2﹣,﹣1),所以滿足條件的P點坐標有3個,它們是(2,1)或(2+,﹣1)或(2﹣,﹣1).【點睛】本題考查了待定系數法求二次函數的解析式:在利用待定系數法求二次函數關系式時,要根據題目給定的條件,選擇恰當的方法設出關系式,從而代入數值求解.一般地,當已知拋物線上三點時,常選擇一般式,用待定系數法列三元一次方程組來求解;當已知拋物線的頂點或對稱軸時,常設其解析式為頂點式來求解;當已知拋物線與x軸有兩個交點時,可選擇設其解析式為交點式來求解.24、(Ⅰ),PA=4;(Ⅱ),【解析】

(Ⅰ)易得△OAC是等邊三角形即∠AOC=60°,又由PC是○O的切線故PC⊥OC,即∠OCP=90°可得∠P的度數,由OC=4可得PA的長度(Ⅱ)由(Ⅰ)知△OAC是等邊三角形,易得∠APC=45°;過點C作CD⊥AB于點D,易得AD=AO=CO,在Rt△DOC中易得CD的長,即可求解【詳解】解:(Ⅰ)∵AB是○O的直徑,∴OA是○O的半徑.∵∠OAC=60°,OA=OC,∴△OAC是等邊三角形.∴∠AOC=60°.∵PC是○O的切線,OC為○O的半徑,∴PC⊥OC,即∠OCP=90°∴∠P=30°.∴PO=2CO=8.∴PA=PO-AO=PO-CO=4.(Ⅱ)由(Ⅰ)知△OAC是等邊三角形,∴∠AOC=∠ACO=∠OAC=60°∴∠AQC=30°.∵AQ=CQ,∴∠ACQ=∠QAC=75°∴∠ACQ-∠ACO=∠QAC-∠OAC=15°即∠QCO=∠QAO=15°.∴∠APC=∠AQC+∠QAO=45°.如圖②,過點C作CD⊥AB于點D.∵△OAC是等邊三角形,CD⊥AB于點D,∴∠DCO=30°,AD=AO=CO=2.∵∠APC=45°,∴∠DCQ=∠APC=45°∴PD=CD在Rt△DOC中,OC=4,∠DCO=30°,∴OD=2,∴CD=2∴PD=CD=2∴AP=AD+DP=2+2【點睛】此題主要考查圓的綜合應用25、2【解析】

直接利用零指數冪的性質以及負指數冪的性質、絕對值的性質、二次根式以及立方根的運算法則分別化簡得出答案.【詳解】解:原式=4﹣3+1+2﹣2=2.【點睛】本題考查實數的運算,難點也在于對原式中零指數冪、負指數冪、絕對值、二次根式以及立方根的運算化簡,關鍵要掌握這些知識點.26、(1)90°;(1)證明見解析;(3)1.【解析】

(1)根據圓周角定理即可得∠CDE的度數;(1)連接DO,根據直角三角形的性質和等腰三角形的性質易證∠ODF=∠ODC+∠FDC=∠OCD+∠DCF=90°,即可判定DF是⊙O的切線;(3)根據已知條件易證△CDE∽△ADC,利用相似三角形的性質結合勾股定理表示出AD,DC的長,再利用圓周角定理得出tan∠ABD的值即可.【詳解】解:(1)解:∵對角線AC為⊙O的直徑,∴∠ADC=90°,∴∠EDC=90°;(1)證明:連接DO,∵∠EDC=90°,F是EC的中點,∴DF=FC,∴∠FDC=∠FCD,∵OD=OC,∴∠OCD=∠ODC,∵∠OCF=90°,∴∠ODF=∠ODC+∠FDC=∠OCD+∠DCF=90°,∴DF是⊙O的切線;(3)解:如圖所示:可得∠ABD=∠ACD,∵∠E+

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論