湖北省黃岡市蘄春縣2025屆數(shù)學高一上期末預測試題含解析_第1頁
湖北省黃岡市蘄春縣2025屆數(shù)學高一上期末預測試題含解析_第2頁
湖北省黃岡市蘄春縣2025屆數(shù)學高一上期末預測試題含解析_第3頁
湖北省黃岡市蘄春縣2025屆數(shù)學高一上期末預測試題含解析_第4頁
湖北省黃岡市蘄春縣2025屆數(shù)學高一上期末預測試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

湖北省黃岡市蘄春縣2025屆數(shù)學高一上期末預測試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知實數(shù),滿足,,則的最大值為()A. B.1C. D.22.“幸福感指數(shù)”是指某個人主觀地評價自己對目前生活狀態(tài)的滿意程度的指標.常用區(qū)間內(nèi)的一個數(shù)來表示,該數(shù)越接近表示滿意度越高.甲、乙兩位同學分別隨機抽取位本地市民,調(diào)查他們的幸福感指數(shù),甲得到位市民的幸福感指數(shù)分別為,,,,,,,,,,乙得到位市民的幸福感指數(shù)的平均數(shù)為,方差為,則這位市民幸福感指數(shù)的方差為()A. B.C. D.3.下列函數(shù)中為奇函數(shù),且在定義域上為增函數(shù)的有()A. B.C. D.4.已知定義域為的函數(shù)滿足:,且,當時,,則等于()A B.C.2 D.45.利用二分法求方程的近似解,可以取得一個區(qū)間A. B.C. D.6.在上,滿足的的取值范圍是A. B.C. D.7.已知函數(shù),函數(shù)有三個零點,則取值范圍是A. B.C. D.8.有四個關(guān)于三角函數(shù)的命題::xR,+=:x、yR,sin(x-y)=sinx-siny:x=sinx:sinx=cosyx+y=其中假命題的是A., B.,C., D.,9.正方形中,點,分別是,的中點,那么A. B.C. D.10.若函數(shù)在R上單調(diào)遞減,則實數(shù)a的取值范圍是()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知為角終邊上一點,且,則______12.計算:______13.已知函數(shù),則函數(shù)f(x)的值域為______.14.已知點是角終邊上任一點,則__________15.若,則_________16.直線與平行,則的值為_________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù).(1)若,判斷函數(shù)的零點個數(shù);(2)若對任意實數(shù),函數(shù)恒有兩個相異的零點,求實數(shù)的取值范圍;(3)已知且,,求證:方程在區(qū)間上有實數(shù)根.18.已知函數(shù),當點在的圖像上移動時,點在函數(shù)的圖像上移動,(1)若點的坐標為,點也在圖像上,求的值(2)求函數(shù)的解析式(3)當,令,求在上的最值19.在三棱錐中,和是邊長為等邊三角形,,分別是的中點.(1)求證:平面;(2)求證:平面;(3)求三棱錐的體積.20.在①;②“”是“”的充分條件:③“”是“”的必要條件,在這三個條件中任選一個,補充到本題第(2)問的橫線處,求解下列問題問題:已知集合,(1)當時,求;(2)若________,求實數(shù)的取值范圍注:如果選擇多個條件分別解答,按第一個解答計分21.中學階段是學生身體發(fā)育重要的階段,長時間熬夜學習嚴重影響學生的身體健康.某校為了解甲、乙兩個班的學生每周熬夜學習的總時長(單位:小時),從這兩個班中各隨機抽取名同學進行調(diào)查,將他們最近一周熬夜學習的總時長作為樣本數(shù)據(jù),如下表所示.如果學生一周熬夜學習的總時長超過小時,則稱為“過度熬夜”.甲班乙班(1)分別計算出甲、乙兩班樣本的平均值;(2)為了解學生過度熬夜的原因,從甲、乙兩班符合“過度熬夜”的樣本數(shù)據(jù)中,抽取個數(shù)據(jù),求抽到的數(shù)據(jù)來自同一個班級的概率;(3)從甲班的樣本數(shù)據(jù)中有放回地抽取個數(shù)據(jù),求恰有個數(shù)據(jù)為“過度熬夜”的概率

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】運用三角代換法,結(jié)合二倍角的正弦公式、正弦型函數(shù)的最值進行求解【詳解】由,得,令,則,因為,所以,即,所以的最大值為,故選:C2、C【解析】設(shè)乙得到位市民的幸福感指數(shù)為,甲得到位市民的幸福感指數(shù)為,求出,,由甲的方差可得的值,再求出的值,由方差公式即可求解.【詳解】設(shè)乙得到位市民的幸福感指數(shù)為,則,甲得到位市民的幸福感指數(shù)為,可得,,所以這位市民的幸福感指數(shù)之和為,平均數(shù)為,由方差的定義,乙所得數(shù)據(jù)的方差:,由于,解得:.因為甲得到位市民的幸福感指數(shù)為,,,,,,,,,,所以,所以這位市民的幸福感指數(shù)的方差為:,故選:C.3、C【解析】根據(jù)函數(shù)的奇偶性,可排除A,B;說明的奇偶性以及單調(diào)性,可判斷C;根據(jù)的單調(diào)性,判斷D.【詳解】函數(shù)為非奇非偶函數(shù),故A錯;函數(shù)為偶函數(shù),故B錯;函數(shù),滿足,故是奇函數(shù),在定義域R上,是單調(diào)遞增函數(shù),故C正確;函數(shù)在上是增函數(shù),在上是增函數(shù),在定義域上不單調(diào),故D錯,故選:C4、A【解析】根據(jù)函數(shù)的周期性以及奇偶性,結(jié)合已知函數(shù)解析式,代值計算即可.【詳解】因為函數(shù)滿足:,且,故是上周期為的偶函數(shù),故,又當時,,則,故.故選:A.5、D【解析】根據(jù)零點存在定理判斷【詳解】設(shè),則函數(shù)單調(diào)遞增由于,,∴在上有零點故選:D.【點睛】本題考查方程解與函數(shù)零點問題.掌握零點存在定理是解題關(guān)鍵6、C【解析】直接利用正弦函數(shù)的性質(zhì)求解即可【詳解】上,滿足的的取值范圍:.故選C【點睛】本題考查正弦函數(shù)的圖象與性質(zhì),考查計算能力,是基礎(chǔ)題7、D【解析】根據(jù)題意做出函數(shù)在定義域內(nèi)的圖像,將函數(shù)零點轉(zhuǎn)化成函數(shù)與函數(shù)圖像交點問題,結(jié)合圖形即可求解.【詳解】解:根據(jù)題意畫出函數(shù)的圖象,如圖所示:函數(shù)有三個零點,等價于函數(shù)與函數(shù)有三個交點,當直線位于直線與直線之間時,符合題意,由圖象可知:,,所以,故選:D.【點睛】根據(jù)函數(shù)零點的情況求參數(shù)有三種常用方法:(1)直接法:直接根據(jù)題設(shè)條件構(gòu)建關(guān)于參數(shù)的不等式,再通過解不等式確定參數(shù)范圍;(2)分離參數(shù)法:先將參數(shù)分離,轉(zhuǎn)化成求函數(shù)值域問題加以解決;(3)數(shù)形結(jié)合法:先對解析式變形,在同一平面直角坐標系中畫出函數(shù)的圖象,然后數(shù)形結(jié)合求解.8、A【解析】故是假命題;令但故是假命題.9、D【解析】由題意點,分別是,中點,求出,,然后求出向量即得【詳解】解:因為點是的中點,所以,點得是的中點,所以,所以,故選:【點睛】本題考查向量加減混合運算及其幾何意義,注意中點關(guān)系與向量的方向,考查基本知識的應(yīng)用。屬于基礎(chǔ)題。10、D【解析】要保證函數(shù)在R上單調(diào)遞減,需使得和都為減函數(shù),且x=1處函數(shù)值滿足,由此解得答案.【詳解】由函數(shù)在R上單調(diào)遞減,可得,解得,故選:D.二、填空題:本大題共6小題,每小題5分,共30分。11、##【解析】利用三角函數(shù)定義可得:,即可求得:,再利用角的正弦、余弦定義計算得解【詳解】由三角函數(shù)定義可得:,解得:,則,所以,,.故答案為:.12、【解析】根據(jù)冪的運算法則,根式的定義計算【詳解】故答案為:13、【解析】求函數(shù)的導數(shù)利用函數(shù)的單調(diào)性求值域即可.【詳解】解:函數(shù),,由,解得,此時函數(shù)單調(diào)遞增由,解得,此時函數(shù)單調(diào)遞減函數(shù)的最小值為(2),(1),(5)最大值為(5),,即函數(shù)的值域為:.故答案為.【點睛】本題主要考查函數(shù)的值域的求法,利用導數(shù)研究函數(shù)的單調(diào)性是解決本題的關(guān)鍵,屬于基礎(chǔ)題.14、##【解析】將所求式子,利用二倍角公式和平方關(guān)系化為,然后由商數(shù)關(guān)系弦化切,結(jié)合三角函數(shù)的定義即可求解.【詳解】解:因為點是角終邊上任一點,所以,所以,故答案為:.15、【解析】先求得,然后求得.【詳解】,.故答案為:16、【解析】根據(jù)兩直線平行得出實數(shù)滿足的等式與不等式,解出即可.【詳解】由于直線與平行,則,解得.故答案為:.【點睛】本題考查利用兩直線平行求參數(shù),考查運算求解能力,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、⑴見解析;⑵;⑶見解析.【解析】(1)利用判別式定二次函數(shù)的零點個數(shù):(2)零點個數(shù)問題轉(zhuǎn)化為圖象交點個數(shù)問題,利用判別式處理即可;(3)方程在區(qū)間上有實數(shù)根,即有零點,結(jié)合零點存在定理可以證明.試題解析:⑴,當時,,函數(shù)有一個零點;當時,,函數(shù)有兩個零點⑵已知,則對于恒成立,即恒成立;所以,從而解得.⑶設(shè),則,在區(qū)間上有實數(shù)根,即方程在區(qū)間上有實數(shù)根.點睛:已知函數(shù)有零點求參數(shù)取值范圍常用的方法和思路(1)直接法:直接根據(jù)題設(shè)條件構(gòu)建關(guān)于參數(shù)的不等式,再通過解不等式確定參數(shù)范圍;(2)分離參數(shù)法:先將參數(shù)分離,轉(zhuǎn)化成求函數(shù)值域問題加以解決;(3)數(shù)形結(jié)合法:先對解析式變形,在同一平面直角坐標系中,畫出函數(shù)的圖象,然后數(shù)形結(jié)合求解18、(1);(2);(3)見解析【解析】(1)首先可通過點坐標得出點的坐標,然后通過點也在圖像上即可得出的值;(2)首先可以設(shè)出點的坐標為,然后得到與、與的關(guān)系,最后通過在的圖像上以及與、與的關(guān)系即可得到函數(shù)的解析式;(3)首先可通過三個函數(shù)的解析式得出函數(shù)的解析式,再通過函數(shù)的單調(diào)性得出函數(shù)的單調(diào)性,最后根據(jù)函數(shù)的單調(diào)性即可計算出函數(shù)的最值【詳解】(1)當點的坐標為,點的坐標為,因為點也在圖像上,所以,即;(2)設(shè)函數(shù)上,則有,即,而在的圖像上,所以,代入得;(3)因為、、,所以,,令函數(shù),因為當時,函數(shù)單調(diào)遞減,所以當時,函數(shù)單調(diào)遞增,,,綜上所述,最小值為,最大值為【點睛】本題考查了對數(shù)函數(shù)的相關(guān)性質(zhì),考查了對數(shù)的運算、對數(shù)函數(shù)的單調(diào)性以及最值,考查函數(shù)方程思想以及化歸與轉(zhuǎn)化思想,體現(xiàn)了基礎(chǔ)性與綜合性,提高了學生的邏輯推理能力19、(1)見解析(2)見解析(3).【解析】由三角形中位線定理,得出,結(jié)合線面平行的判定定理,可得平面PAC;等腰和等腰中,證出,而,由勾股定理的逆定理,得,結(jié)合,可得平面ABC;由易知PO是三棱錐的高,算出等腰的面積,再結(jié)合錐體體積公式,可得三棱錐的體積【詳解】,D分別為AB,PB的中點,又平面PAC,平面PAC平面如圖,連接OC,O為AB中點,,,且同理,,又,,得、平面ABC,,平面平面ABC,D為PB的中點,結(jié)合,得棱錐的高為,體積為【點睛】本題給出特殊三棱錐,求證線面平行、線面垂直并求錐體體積,考查了線面平行、線面垂直的判定與性質(zhì)和錐體體積公式等知識,屬于中檔題20、(1)(2)【解析】(1)首先解一元二次不等式得到集合,再求出集合,最后根據(jù)交集的定義計算可得;(2)根據(jù)所選條件均可得到,即可得到不等式,解得即可;【小問1詳解】解:由,解得,所以,當時,,所以【小問2詳解】解:若選①,則,所以,解得,即;若選②“”是“”的充分條件,所以,所以,解得,即;若選③“”是“”的必要條件,所以,所以,解得,即;21、(1),;(2);(3)【解析】(1)利用平均數(shù)公式代入求解;(2)由題意得甲班和乙班各有“過度熬夜”的人數(shù)為,計算得基本事件總數(shù)和個數(shù)據(jù)來自同一個班級的基本事件的個數(shù),然后利用古典概型的公式代入計算取個數(shù)據(jù)來自同一個班級的概率;(3)甲班共有個數(shù)據(jù),其中“過度熬夜”的數(shù)據(jù)有個,計算得基本事件總數(shù)和恰有個數(shù)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論