版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2025屆昭通市重點中學(xué)數(shù)學(xué)高二上期末考試模擬試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.拋物線的準(zhǔn)線方程是A.x=1 B.x=-1C. D.2.已知橢圓:的左、右焦點為,,上頂點為P,則()A.為銳角三角形 B.為鈍角三角形C.為直角三角形 D.,,三點構(gòu)不成三角形3.已知三棱柱的所有棱長均為2,平面,則異面直線,所成角的余弦值為()A. B.C. D.4.已知,數(shù)列,,,與,,,,都是等差數(shù)列,則的值是()A. B.C. D.5.如圖,在直三棱柱中,D為棱的中點,,,,則異面直線CD與所成角的余弦值為()A. B.C. D.6.已知等差數(shù)列為其前項和,且,且,則()A.36 B.117C. D.137.若圓與圓有且僅有一條公切線,則()A.-23 B.-3C.-12 D.-138.已知函數(shù),若存在唯一的零點,且,則的取值范圍是A. B.C. D.9.如圖,在棱長為1的正方體中,M是的中點,則點到平面MBD的距離是()A. B.C. D.10.已知圓的圓心在軸上,半徑為2,且與直線相切,則圓的方程為A. B.或C. D.或11.已知在平面直角坐標(biāo)系中,圓的方程為,直線過點且與直線垂直.若直線與圓交于兩點,則的面積為A.1 B.C.2 D.12.命題“若,則”的否命題是()A.若,則 B.若,則C.若,則 D.若,則二、填空題:本題共4小題,每小題5分,共20分。13.已知命題:平面上一矩形ABCD的對角線AC與邊AB和AD所成角分別為,則,若把它推廣到空間長方體中,體對角線與平面,平面,平面所成的角分別為,則可以類比得到的結(jié)論為___________________.14.如圖,橢圓的左右焦點為,,以為圓心的圓過原點,且與橢圓在第一象限交于點,若過、的直線與圓相切,則直線的斜率______;橢圓的離心率______.15.在中,,,,則__________.16.設(shè)是同一個半徑為4的球的球面上四點,為等邊三角形且其面積為,則三棱錐體積的最大值為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)年月初,浙江杭州、寧波、紹興三地相繼爆發(fā)新冠肺炎疫情.疫情期間口罩需求量大增,某醫(yī)療器械公司開始生產(chǎn)口罩,并且對所生產(chǎn)口罩的質(zhì)量按指標(biāo)測試分?jǐn)?shù)進(jìn)行劃分,其中分?jǐn)?shù)不小于的為合格品,否則為不合格品,現(xiàn)隨機抽取件口罩進(jìn)行檢測,其結(jié)果如表:測試分?jǐn)?shù)數(shù)量(1)根據(jù)表中數(shù)據(jù),估計該公司生產(chǎn)口罩的不合格率;(2)若用分層抽樣的方式按是否合格從所生產(chǎn)口罩中抽取件,再從這件口罩中隨機抽取件,求這件口罩全是合格品的概率18.(12分)已知橢圓的一個焦點與拋物線的焦點重合,橢圓上的動點到焦點的最大距離為.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)過作一條不與坐標(biāo)軸垂直的直線交橢圓于兩點,弦的中垂線交軸于,當(dāng)變化時,是否為定值?若是,定值為多少?19.(12分)已知函數(shù).(1)證明:;(2)若函數(shù)有兩個零點,求實數(shù)的取值范圍.20.(12分)如圖,在正方體中,E,F(xiàn),G,H,K,L分別是AB,,,,,DA各棱的中點.(1)求證:E,F(xiàn),G,H,K,L共面:(2)求證:平面EFGHKL;(3)求與平面EFGHKL所成角的余弦值.21.(12分)已知點,圓.(1)若直線l過點M,且被圓C截得的弦長為,求直線l的方程;(2)設(shè)O為坐標(biāo)原點,點N在圓C上運動,線段的中點為P,求點P的軌跡方程.22.(10分)已知點,橢圓:離心率為,是橢圓的右焦點,直線的斜率為,為坐標(biāo)原點.設(shè)過點的動直線與相交于,兩點(1)求橢圓的方程(2)是否存在直線,使得的面積為?若存在,求出的方程;若不存在,請說明理由
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】先把拋物線方程整理成標(biāo)準(zhǔn)方程,進(jìn)而求得p,再根據(jù)拋物線性質(zhì)得出準(zhǔn)線方程【詳解】解:整理拋物線方程得,∴p=∵拋物線方程開口向上,∴準(zhǔn)線方程是y=﹣故答案為C【點睛】本題主要考查拋物線的標(biāo)準(zhǔn)方程和簡單性質(zhì).屬基礎(chǔ)題2、A【解析】根據(jù)題意求得,要判斷的形狀,只需要看是什么角即可,利用余弦定理判斷,從而可得結(jié)論.【詳解】解:由橢圓:,得,則,則,所以且為銳角,因為,所以銳角,所以為銳角三角形.故選:A.3、A【解析】建立空間直角坐標(biāo)系,利用向量法求解【詳解】以為坐標(biāo)原點,平面內(nèi)過點且垂直于的直線為軸,所在直線為軸,所在直線為軸建立空間直角坐標(biāo)系,如圖所示,則,,,,∴,,∴,∴異面直線,所成角的余弦值為.故選:A4、A【解析】根據(jù)等差數(shù)列的通項公式,分別表示出,,整理即可得答案.【詳解】數(shù)列,,,和,,,,各自都成等差數(shù)列,,,,故選:A5、A【解析】以C為坐標(biāo)原點,分別以,,方向為x,y,z軸的正方向,建立如圖所示的空間直角坐標(biāo)系.運用異面直線的空間向量求解方法,可求得答案.【詳解】解:以C為坐標(biāo)原點,分別以,,的方向為x,y,z軸的正方向,建立如圖所示的空間直角坐標(biāo)系.由已知可得,,,,則,,所以.又因為異面直線所成的角的范圍為,所以異面直線與所成角的余弦值為.故選:A.6、B【解析】根據(jù)等差數(shù)列下標(biāo)的性質(zhì),,進(jìn)而根據(jù)條件求出,然后結(jié)合等差數(shù)列的求和公式和下標(biāo)性質(zhì)求得答案.【詳解】由題意,,即為遞增數(shù)列,所以,又,又,聯(lián)立方程組解得:.于是,.故選:B.7、A【解析】根據(jù)兩圓有且僅有一條公切線,得到兩圓內(nèi)切,從而可求出結(jié)果.【詳解】因為圓,圓心為,半徑為;圓可化為,圓心為,半徑,又圓與圓有且僅有一條公切線,所以兩圓內(nèi)切,因此,即,解得.故選:A.8、C【解析】當(dāng)時,,函數(shù)有兩個零點和,不滿足題意,舍去;當(dāng)時,,令,得或.時,;時,;時,,且,此時在必有零點,故不滿足題意,舍去;當(dāng)時,時,;時,;時,,且,要使得存在唯一的零點,且,只需,即,則,選C考點:1、函數(shù)的零點;2、利用導(dǎo)數(shù)求函數(shù)的極值;3、利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性9、A【解析】等體積法求解點到平面的距離.【詳解】連接,,則,,由勾股定理得:,,取BD中點E,連接ME,由三線合一得:ME⊥BD,則,故,設(shè)到平面MBD的距離是,則,解得:,故點到平面MBD的距離是.故選:A10、D【解析】設(shè)圓心坐標(biāo),由點到直線距離公式可得或,進(jìn)而求得答案【詳解】設(shè)圓心坐標(biāo),因為圓與直線相切,所以由點到直線的距離公式可得,解得或.因此圓的方程為或.【點睛】本題考查利用直線與圓的位置關(guān)系求圓的方程,屬于一般題11、A【解析】∵圓的方程為,即,∴圓的圓心為,半徑為2.∵直線過點且與直線垂直∴直線.∴圓心到直線的距離.∴直線被圓截得的弦長,又∵坐標(biāo)原點到的距離為,∴的面積為.考點:1、直線與圓的位置關(guān)系;2、三角形的面積公式.12、B【解析】根據(jù)原命題的否命題是條件結(jié)論都要否定【詳解】解:因為原命題的否命題是條件結(jié)論都要否定所以命題“若,則”的否命題是若,則;故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】先由線面角的定義得到,再計算的值即可得到結(jié)論【詳解】在長方體中,連接,在長方體中,平面,所以對角線與平面所成的角為,對角線與平面所成的角為,對角線與平面所成的角為,顯然,,,所以,,故答案為:14、①.②.【解析】根據(jù)直角三角形的性質(zhì)求得,由此求得,結(jié)合橢圓的定義求得離心率.【詳解】連接,由于是圓的切線,所以.在中,,所以,所以,所以直線的斜率.,根據(jù)橢圓的定義可知.故答案為:;【點睛】本小題主要考查橢圓的定義、橢圓的離心率,屬于中檔題.15、【解析】由已知在中利用余弦定理可得的值,可求,可得,即可得解的值【詳解】解:因為在中,,,,所以由余弦定理可得,所以,即,則故答案為:16、【解析】求出等邊的邊長,畫出圖形,判斷D的位置,然后求解即可.【詳解】為等邊三角形且其面積為,則,如圖所示,設(shè)點M為的重心,E為AC中點,當(dāng)點在平面上的射影為時,三棱錐的體積最大,此時,,點M為三角形ABC的重心,,中,有,,所以三棱錐體積的最大值故答案為:【點睛】思路點睛:本題考查球的內(nèi)接多面體,棱錐的體積的求法,要求內(nèi)接三棱錐體積的最大值,底面是面積一定的等邊三角形,需要該三棱錐的高最大,故需要底面,再利用內(nèi)接球,求出高,即可求出體積的最大值,考查學(xué)生的空間想象能力與數(shù)形結(jié)合思想,及運算能力,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)由題意知分?jǐn)?shù)小于的產(chǎn)品為不合格品,故有件,一共有件口罩,即可求出口罩的不合格率.(2)先利用分層抽樣確定抽取的件口罩中合格產(chǎn)品和不合格產(chǎn)品的數(shù)量分別為件和件,再利用古典概型把所有基本事件種都列舉出來,在判斷件口罩全是合格品的事件有種情況,即可得到答案.【小問1詳解】在抽取的件產(chǎn)品中,不合格的口罩有(件)所以口罩為不合格品的頻率為,根據(jù)頻率可估計該公司所生產(chǎn)口罩的不合格率為【小問2詳解】由題意所抽取件口罩中不合格的件,合格的件設(shè)件合格口罩記為,件不合格口罩記為而從件口罩中抽取件,共有共種情況,這件口罩全是合格品的事件有共種情況故件口罩全是合格品的概率為18、(1)(2)是,【解析】(1)由拋物線方程求出其焦點坐標(biāo),結(jié)合橢圓的幾何性質(zhì)列出,的方程,解方程求,由此可得橢圓方程,(2)聯(lián)立直線橢圓橢圓方程,求出弦的長和其中垂線方程,再計算,由此完成證明.【小問1詳解】拋物線的交點坐標(biāo)為(1,0),,又,又,∴,橢圓的標(biāo)準(zhǔn)方程為.【小問2詳解】設(shè)直線的斜率為,則直線的方程為,聯(lián)立消元得到,顯然,,∴,又的中點坐標(biāo)為,直線的中垂線的斜率為∴直線的中垂線方程為,令,,(常數(shù)).【點睛】求定值問題常見的方法有兩種:(1)從特殊入手,求出定值,再證明這個值與變量無關(guān)(2)直接推理、計算,并在計算推理的過程中消去變量,從而得到定值19、(1)證明見解析;(2).【解析】(1)令,求導(dǎo)得到函數(shù)的增區(qū)間為,減區(qū)間為,故,得到證明.(2),討論和兩種情況,計算函數(shù)的單調(diào)區(qū)間得到,解得答案.【詳解】(1)令,有,令可得,故函數(shù)的增區(qū)間為,減區(qū)間為,,故有.(2)由①當(dāng)時,,此時函數(shù)的減區(qū)間為,沒有增區(qū)間;②當(dāng)時,令可得,此時函數(shù)的增區(qū)間為,減區(qū)間為.若函數(shù)有兩個零點,必須且,可得,此時,又由,當(dāng)時,由(1)有,取時,顯然有,當(dāng)時,故函數(shù)有兩個零點時,實數(shù)的取值范圍為.【點睛】本題考查了利用導(dǎo)數(shù)證明不等式,根據(jù)零點求參數(shù),意在考查學(xué)生的計算能力和應(yīng)用能力.20、(1)證明見解析;(2)證明見解析;(3).【解析】建立空間直角坐標(biāo)系,求出各點的坐標(biāo);(1)用向量的坐標(biāo)運算證明向量共面,進(jìn)而證明點共面;(2)利用向量的數(shù)量積的坐標(biāo)運算證明,即可;(3)確定平面EFGHKL的一個法向量,利用空間角度的向量計算公式求得答案.【小問1詳解】證明:以D為原點,分別以DA,DC,所在直線為x,y,z軸建立空間直角坐標(biāo)系,不妨設(shè)正方體的棱長為2.則,,,,,,,.可得,,,,,.可得,,,,,所以,,,,共面,又它們過同一點E,所以E,F(xiàn),G,H,K,L共面.【小問2詳解】證明:由(1)得,,又故,,又,所以平面LEF,即平面EFGHKL.【小問3詳解】由(2)知,是平面EFGHKL的一個法向量,設(shè)與平面EFGHKL所成角為,,,.所以,所以與平面EFGHKL所成角的余弦值為.21、(1)或(2)【解析】(1)由直線被圓C截得的弦長為,求得圓心到直線的距離為,分直線的斜率不存在和斜率存在兩種情況討論,結(jié)合點到直線的距離公式,列出方程,即可求解.(2)設(shè)點,,根據(jù)線段的中點為,求得,結(jié)合在圓上,代入即可求解.【小問1詳解】解:由題意,圓,可得圓心,半徑,因為直線被圓C截得的弦長為,則圓心到直線的距離為,當(dāng)直線的斜率不存在時,此時直線的方程為,滿足題意;當(dāng)直線的斜率存在時,設(shè)直線的方程為,即,則,解得,即,綜上可得,所求直線的方程為或.【小問2詳解】解:設(shè)點,因
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版汽車抵押貸款合同借款人借款用途變更通知合同3篇
- 二零二五年度城市軌道交通內(nèi)部承包合同6篇
- 二零二五版企業(yè)日常經(jīng)營客戶關(guān)系管理與維護(hù)合同2篇
- 二零二五年酒店員工入股與酒店服務(wù)體驗優(yōu)化合同3篇
- 二零二五年度廁所革命專項基金使用管理合同3篇
- 二零二五年度新能源風(fēng)能發(fā)電設(shè)備研發(fā)制造合同2篇
- 二零二五版企業(yè)法人借款合同擔(dān)保協(xié)議3篇
- 2025版大清包勞務(wù)合同范本:二零二五年度文化活動組織執(zhí)行合同3篇
- 二零二五年海底光纜線路鋪設(shè)及安全保障合同3篇
- 2025年度祠堂宗教活動組織與承包合同2篇
- 抖音直播帶貨協(xié)議書模板
- 2024義務(wù)教育體育與健康課程標(biāo)準(zhǔn)(2022年版)必考題庫及答案
- 工業(yè)機器人控制器:FANUC R-30iB:機器人實時監(jiān)控與數(shù)據(jù)采集技術(shù)教程
- 墓地銷售計劃及方案設(shè)計書
- 新加坡留學(xué)完整版本
- 勞務(wù)服務(wù)合作協(xié)議書范本
- 優(yōu)佳學(xué)案七年級上冊歷史
- 中醫(yī)五臟心完整版本
- 智能音箱方案
- 鋁箔行業(yè)海外分析
- 京東商城物流配送現(xiàn)狀及對策分析
評論
0/150
提交評論