




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
四川省瀘縣二中2025屆高二上數(shù)學期末質(zhì)量跟蹤監(jiān)視試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若正整數(shù)N除以正整數(shù)m后的余數(shù)為n,則記為,如.如圖所示的程序框圖的算法源于我國古代聞名中外的“中國剩余定理”.執(zhí)行該程序框圖,則輸出的i等于()A.7 B.10C.13 D.162.已知函數(shù),則曲線在點處的切線方程為()A. B.C. D.3.設雙曲線:的左、右焦點分別為、,P為C上一點,且,,則雙曲線的漸近線方程為()A. B.C. D.4.若等軸雙曲線C過點,則雙曲線C的頂點到其漸近線的距離為()A.1 B.C. D.25.紫砂壺是中國特有的手工制造陶土工藝品,其制作始于明朝正德年間.紫砂壺的壺型眾多,經(jīng)典的有西施壺、掇球壺、石瓢壺、潘壺等.其中,石瓢壺的壺體可以近似看成一個圓臺(即圓錐用平行于底面的平面截去一個錐體得到的).下圖給出了一個石瓢壺的相關數(shù)據(jù)(單位:cm),那么該壺的容量約為()A.100 B.C.300 D.4006.動點到兩定點,的距離和是,則動點的軌跡為()A.橢圓 B.雙曲線C.線段 D.不能確定7.若指數(shù)函數(shù)(且)與三次函數(shù)的圖象恰好有兩個不同的交點,則實數(shù)的取值范圍是()A. B.C. D.8.函數(shù)的大致圖象為A. B.C. D.9.已知等差數(shù)列的前n項和為,且,,若(,且),則i的取值集合是()A. B.C. D.10.設等差數(shù)列的前項和為,若,則的值為()A.28 B.39C.56 D.11711.曲線為四葉玫瑰線,這種曲線在苜蓿葉型立交橋的布局中有非常廣泛的應用,苜蓿葉型立交橋有兩層,將所有原來需要穿越相交道路的轉(zhuǎn)向都由環(huán)形匝道來實現(xiàn),即讓左轉(zhuǎn)車輛行駛環(huán)道后自右側切向匯入高速公路,四條環(huán)形匝道就形成了苜蓿葉的形狀.下列結論正確的個數(shù)是()①曲線C關于點(0,0)對稱;②曲線C關于直線y=x對稱;③曲線C的面積超過4π.A.0 B.1C.2 D.312.如圖,平面四邊形中,,,,為等邊三角形,現(xiàn)將沿翻折,使點移動至點,且,則三棱錐的外接球的表面積為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知,用割線逼近切線的方法可以求得___________.14.函數(shù)的圖象在點P()處的切線方程是,則_____15.橢圓的兩焦點為,,P為C上的一點(P與,不共線),則的周長為______.16.已知直線與,若,則實數(shù)a的值為______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知直線與拋物線交于兩點(1)若,直線過拋物線的焦點,線段中點的縱坐標為2,求的長;(2)若交于,求的值18.(12分)在平面直角坐標系中,已知.(1)求直線的方程;(2)平面內(nèi)的動點滿足,到點與點距離的平方和為24,求動點的軌跡方程.19.(12分)在平面直角坐標系中,圓C:,直線l:(1)若直線l與圓C相切于點N,求切點N的坐標;(2)若,直線l上有且僅有一點A滿足:過點A作圓C的兩條切線AP、AQ,切點分別為P,Q,且使得四邊形APCQ為正方形,求m的值20.(12分)如圖,正方形和四邊形所在的平面互相垂直,.(1)求證:平面;(2)求平面與平面的夾角.21.(12分)已知函數(shù)在處取得極值(1)求實數(shù)a的值;(2)若函數(shù)在內(nèi)有零點,求實數(shù)b的取值范圍22.(10分)已知;對任意的恒成立.(1)若是真命題,求m的取值范圍;(2)若是假命題,是真命題,求m的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】根據(jù)“中國剩余定理”,進而依次執(zhí)行循環(huán)體,最后求得答案.【詳解】由題意,第一步:,余數(shù)不為1;第二步:,余數(shù)不為1;第三步:,余數(shù)為1,執(zhí)行第二個判斷框,余數(shù)不為2;第四步:,執(zhí)行第一個判斷框,余數(shù)為1,執(zhí)行第二個判斷框,余數(shù)為2.輸出的i值為13.故選:C.2、A【解析】求出函數(shù)的導函數(shù),再求出,然后利用導數(shù)的幾何意義求解作答.【詳解】函數(shù),求導得:,則,而,于是得:,即,所以曲線在點處的切線方程為.故選:A3、B【解析】根據(jù)雙曲線定義結合,求得,在中,利用余弦定理求得之間的關系,即可得出答案.【詳解】解:因為在雙曲線中,因為,所以,所以,在中,,,由余弦定理可得,即,所以,所以,所以,所以雙曲線的漸近線方程為.故選:B.4、A【解析】先求出雙曲線C的標準方程,再求頂點到其漸近線的距離.【詳解】設等軸雙曲線C的標準方程為,因為點在雙曲線上,所以,解得,所以雙曲線C的標準方程為,故上頂點到其一條漸近線的距離為.故選:A5、B【解析】根據(jù)圓臺的體積等于兩個圓錐的體積之差,即可求出【詳解】設大圓錐的高為,所以,解得故故選:B【點睛】本題主要考查圓臺體積的求法以及數(shù)學在生活中的應用,屬于基礎題6、A【解析】根據(jù)橢圓的定義,即可得答案.【詳解】由題意可得,根據(jù)橢圓定義可得,P點的軌跡為橢圓,故選:A7、A【解析】分析可知直線與曲線在上的圖象有兩個交點,令可得出,令,問題轉(zhuǎn)化為直線與曲線有兩個交點,利用導數(shù)分析函數(shù)的單調(diào)性與極值,數(shù)形結合可得出實數(shù)的取值范圍.【詳解】當時,,,此時兩個函數(shù)的圖象無交點;當時,由得,可得,令,其中,則直線與曲線有兩個交點,,當時,,此時函數(shù)單調(diào)遞增,當時,,此時函數(shù)單調(diào)遞減,則,且當時,,作出直線與曲線如下圖所示:由圖可知,當時,即當時,指數(shù)函數(shù)(且)與三次函數(shù)的圖象恰好有兩個不同的交點.故選:A.8、D【解析】根據(jù)函數(shù)奇偶性排除A、C.當時排除B【詳解】解:由可得所以函數(shù)為偶函數(shù),排除A、C.因為時,,排除B.故選:D.9、C【解析】首先求出等差數(shù)列的首先和公差,然后寫出數(shù)列即可觀察到滿足的i的取值集合.【詳解】設公差為d,由題知,,解得,,所以數(shù)列為,故.故選:C.【點睛】本題主要考查了等差數(shù)列的基本量的求解,屬于基礎題.10、B【解析】由已知結合等差數(shù)列的求和公式及等差數(shù)列的性質(zhì)即可求解.【詳解】因為等差數(shù)列中,,則.故選:B.11、C【解析】根據(jù)圖像或解析式即可判斷對稱性①②;估算第一象限內(nèi)圖像面積即可判斷③.【詳解】①將點(-x,-y)代入后依然為,故曲線C關于原點對稱;②將點(y,x)代入后依然為,故曲線C關于y=x對稱;③曲線C在四個象限的圖像是完全相同的,不妨只研究第一象限的部分,∵,∴曲線C上離原點最遠的點的距離為顯然第一象限內(nèi)曲線C的面積小于以為直徑的圓的面積,又∵,∴第一象限內(nèi)曲線C的面積小于,則曲線C的總面積小于4π.故③錯誤.故選:C.12、A【解析】將三棱錐補形為如圖所示的三棱柱,則它們的外接球相同,由此易知外接球球心應在棱柱上下底面三角形的外心連線上,在中,計算半徑即可.【詳解】由,,可知平面將三棱錐補形為如圖所示的三棱柱,則它們的外接球相同,由此易知外接球球心應在棱柱上下底面三角形的外心連線上,記的外心為,由為等邊三角形,可得又,故在中,此即為外接球半徑,從而外接球表面積為故選:A【點睛】本題考查了三棱錐外接球的表面積,考查了學生空間想象,邏輯推理,綜合分析,數(shù)學運算的能力,屬中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)導數(shù)的定義直接計算即可【詳解】因為,所以,故答案為:14、【解析】根據(jù)導數(shù)的幾何意義,結合切線方程,即可求解.【詳解】根據(jù)導數(shù)的幾何意義可知,,且,所以.故答案為:15、【解析】結合橢圓的定義求得正確答案.【詳解】橢圓方程為,所以,所以三角形的周長為.故答案為:16、【解析】由可得,從而可求出實數(shù)a的值【詳解】因為直線與,且,所以,解得,故答案:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)6(2)2【解析】(1)通過作輔助線,利用拋物線定義,結合梯形的中位線定理,可求得答案;(2)根據(jù)題意可求得直線AB的方程為y=x+4,聯(lián)立拋物線方程,得到根與系數(shù)的關系,由OA⊥OB,得,根據(jù)數(shù)量積的計算即可得答案.【小問1詳解】取AB的中點為E,當p=2時,拋物線為C:x2=4y,焦點F坐標為F(0,1),過A,E,B分別作準線y=-1的垂線,重足分別為I,H,G,在梯形ABGI中(圖1),E是AB中點,則2EH=AI+BG,EH=2-(-1)=3,因為AB=AF+BF=AI+BG,所以AB=2EH=6.【小問2詳解】設,由OD⊥AB交AB于D(-2,2),(圖2),得kOD=-1,kAB=1,則直線AB的方程為y=x+4,由得,所以,由,得,即,即,可得,即,所以p=2.18、(1)(2)【解析】(1)結合點斜式求得直線的方程.(2)設,根據(jù)已知條件列方程,化簡求得的軌跡方程.【小問1詳解】,于是直線的方程為,即【小問2詳解】設動點,于是,代入坐標得,化簡得,于是動點的軌跡方程為19、(1)或(2)3.【解析】(1)設切點坐標,由切點和圓心連線與切線垂直以及切點在圓上建立關系式,求解切點坐標即可;(2)由圓的方程可得圓心坐標及半徑,由APCQ為正方形,可得|AC|=可得圓心到直線的距離為,可得m的值【小問1詳解】解:設切點為,則有,解得:或x0=-2+1y0=-2,所以切點的坐標為或【小問2詳解】解:圓C:的圓心(1,0),半徑r=2,設,由題意可得,由四邊形APCQ為正方形,可得|AC|=,即,由題意直線l⊥AC,圓C:(x﹣1)2+y2=4,則圓心(1,0)到直線的距離,可得,m>0,解得m=3.20、(1)證明見解析(2)【解析】(1)由題意可證得,所以以C為坐標原點,所在直線分別為x軸,y軸,z軸建立空間直角坐標系,利用空間向量證明,(2)求出兩個平面的法向量,利用空間向量求解【小問1詳解】∵平面平面,平面平面,∴平面,∴,以C為坐標原點,所在直線分別為x軸,y軸,z軸建立空間直角坐標系,則,.設平面的法向量為,則,令,則,∵平面,∴∥平面.【小問2詳解】,設平面的法向量為,則,令,則.∴.由圖可知平面與平面的夾角為銳角,所以平面與平面的夾角為.21、(1);(2)【解析】(1)由題意可得,從而可求出a的值;(2)先對函數(shù)求導,求得函數(shù)的單調(diào)區(qū)間,從而可由函數(shù)的變化情況可知,要函數(shù)在內(nèi)有零點,只要函數(shù)在內(nèi)的最大值大于等于零,最小值小于等于零,然后解不等式組可得答案【詳解】解:(1)在處取得極值,∴,∴.經(jīng)驗證時,在處取得極值(2)由(1)知,∴極值點為2,.將x,,在內(nèi)的取值列表如下:x024/-0+/b極小值由此可得,在內(nèi)有零
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 商鋪協(xié)議過戶合同模板
- 律師合同協(xié)議收費標準
- 2025年江西信豐中燃城市燃氣發(fā)展有限公司招聘筆試參考題庫附帶答案詳解
- 2025年安徽銅陵港航投資建設有限責任公司招聘筆試參考題庫含答案解析
- 2025年四川攀枝花市鼎信投資有限責任公司招聘筆試參考題庫含答案解析
- 健康管理師考試管理心理學的應用試題及答案
- 常見藥物的護理安全知識試題及答案
- 探討2025年公共營養(yǎng)師考試學習成效試題及答案
- 國開考試試題及答案
- 圖書管理員考試的學習資源多樣化分析試題及答案
- 四川自貢九鼎大樓“7·17”重大火災事故調(diào)查報告學習警示教育
- 小學生國家安全教育日學習課件
- 2025標準金融服務合同范本
- 農(nóng)業(yè)環(huán)境與可持續(xù)發(fā)展試題及答案
- 2025年中國安防視頻監(jiān)控鏡頭市場競爭態(tài)勢及投資方向研究報告
- 2025遼寧沈陽地鐵集團有限公司所屬公司招聘11人筆試參考題庫附帶答案詳解
- 2025年合肥熱電集團春季招聘30人筆試參考題庫附帶答案詳解
- 旅行社安全生產(chǎn)培訓
- 電信行業(yè)用戶欠費催收策略與措施
- 銀行資格考試分析與策略試題及答案
- 第8課《良師相伴 亦師亦友》第1框《良師相伴助力成長》-【中職專用】《心理健康與職業(yè)生涯》同步課堂課件
評論
0/150
提交評論