四川省遂寧市名校2024屆中考數(shù)學猜題卷含解析_第1頁
四川省遂寧市名校2024屆中考數(shù)學猜題卷含解析_第2頁
四川省遂寧市名校2024屆中考數(shù)學猜題卷含解析_第3頁
四川省遂寧市名校2024屆中考數(shù)學猜題卷含解析_第4頁
四川省遂寧市名校2024屆中考數(shù)學猜題卷含解析_第5頁
已閱讀5頁,還剩19頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

四川省遂寧市名校2024屆中考數(shù)學猜題卷注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.已知關(guān)于x的不等式3x﹣m+1>0的最小整數(shù)解為2,則實數(shù)m的取值范圍是()A.4≤m<7 B.4<m<7 C.4≤m≤7 D.4<m≤72.右圖是由四個小正方體疊成的一個立體圖形,那么它的俯視圖是()A. B. C. D.3.如圖,小穎為測量學校旗桿AB的高度,她在E處放置一塊鏡子,然后退到C處站立,剛好從鏡子中看到旗桿的頂部B.已知小穎的眼睛D離地面的高度CD=1.5m,她離鏡子的水平距離CE=0.5m,鏡子E離旗桿的底部A處的距離AE=2m,且A、C、E三點在同一水平直線上,則旗桿AB的高度為()A.4.5m B.4.8m C.5.5m D.6m4.拋物線y=3(x﹣2)2+5的頂點坐標是()A.(﹣2,5)B.(﹣2,﹣5)C.(2,5)D.(2,﹣5)5.拒絕“餐桌浪費”,刻不容緩.節(jié)約一粒米的帳:一個人一日三餐少浪費一粒米,全國一年就可以節(jié)省斤,這些糧食可供9萬人吃一年.“”這個數(shù)據(jù)用科學記數(shù)法表示為()A. B. C. D..6.一條數(shù)學信息在一周內(nèi)被轉(zhuǎn)發(fā)了2180000次,將數(shù)據(jù)2180000用科學記數(shù)法表示為()A.2.18×106B.2.18×105C.21.8×106D.21.8×1057.某籃球運動員在連續(xù)7場比賽中的得分(單位:分)依次為20,18,23,17,20,20,18,則這組數(shù)據(jù)的眾數(shù)與中位數(shù)分別是()A.18分,17分B.20分,17分C.20分,19分D.20分,20分8.如圖所示,在方格紙上建立的平面直角坐標系中,將△ABC繞點O按順時針方向旋轉(zhuǎn)90°,得到△A′B′O,則點A′的坐標為()A.(3,1) B.(3,2) C.(2,3) D.(1,3)9.下列圖形中,既是軸對稱圖形又是中心對稱圖形的是()A.等邊三角形 B.菱形 C.平行四邊形 D.正五邊形10.將直徑為60cm的圓形鐵皮,做成三個相同的圓錐容器的側(cè)面(不浪費材料,不計接縫處的材料損耗),那么每個圓錐容器的底面半徑為()A.10cm B.30cm C.45cm D.300cm11.下面運算結(jié)果為的是A. B. C. D.12.關(guān)于x的一元二次方程x2+2x+k+1=0的兩個實根x1,x2,滿足x1+x2﹣x1x2<﹣1,則k的取值范圍在數(shù)軸上表示為()A. B.C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.某學校要購買電腦,A型電腦每臺5000元,B型電腦每臺3000元,購買10臺電腦共花費34000元設購買A型電腦x臺,購買B型電腦y臺,則根據(jù)題意可列方程組為______.14.如圖,已知等腰直角三角形ABC的直角邊長為1,以Rt△ABC的斜邊AC為直角邊,畫第二個等腰直角三角形ACD,再以Rt△ACD的斜邊AD為直角邊,畫第三個等腰直角三角形ADE……依此類推,直到第五個等腰直角三角形AFG,則由這五個等腰直角三角形所構(gòu)成的圖形的面積為__________.15.某風扇在網(wǎng)上累計銷量約1570000臺,請將1570000用科學記數(shù)法表示為_____.16.釣魚島周圍海域面積約為170000平方千米,170000用科學記數(shù)法表示為______.17.|-3|=_________;18.如圖,正方形內(nèi)的陰影部分是由四個直角邊長都是1和3的直角三角形組成的,假設可以在正方形內(nèi)部隨意取點,那么這個點取在陰影部分的概率為.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,拋物線與x軸交于A,B,與y軸交于點C(0,2),直線經(jīng)過點A,C.(1)求拋物線的解析式;(2)點P為直線AC上方拋物線上一動點;①連接PO,交AC于點E,求的最大值;②過點P作PF⊥AC,垂足為點F,連接PC,是否存在點P,使△PFC中的一個角等于∠CAB的2倍?若存在,請直接寫出點P的坐標;若不存在,請說明理由.20.(6分)貨車行駛25與轎車行駛35所用時間相同.已知轎車每小時比貨車多行駛20,求貨車行駛的速度.21.(6分)(1)如圖1,在矩形ABCD中,AB=2,BC=5,∠MPN=90°,且∠MPN的直角頂點在BC邊上,BP=1.①特殊情形:若MP過點A,NP過點D,則=.②類比探究:如圖2,將∠MPN繞點P按逆時針方向旋轉(zhuǎn),使PM交AB邊于點E,PN交AD邊于點F,當點E與點B重合時,停止旋轉(zhuǎn).在旋轉(zhuǎn)過程中,的值是否為定值?若是,請求出該定值;若不是,請說明理由.(2)拓展探究:在Rt△ABC中,∠ABC=90°,AB=BC=2,AD⊥AB,⊙A的半徑為1,點E是⊙A上一動點,CF⊥CE交AD于點F.請直接寫出當△AEB為直角三角形時的值.22.(8分)我國古代《算法統(tǒng)宗》里有這樣一首詩:我問開店李三公,眾客都來到店中,一房七客多七客,一房九客一房空.詩中后兩句的意思是:如果每間客房住7人,那么有7人無房可住;如果每間客房住9人,那么就空出一間房.求該店有客房多少間?房客多少人?23.(8分)如圖1,直角梯形OABC中,BC∥OA,OA=6,BC=2,∠BAO=45°.(1)OC的長為;(2)D是OA上一點,以BD為直徑作⊙M,⊙M交AB于點Q.當⊙M與y軸相切時,sin∠BOQ=;(3)如圖2,動點P以每秒1個單位長度的速度,從點O沿線段OA向點A運動;同時動點D以相同的速度,從點B沿折線B﹣C﹣O向點O運動.當點P到達點A時,兩點同時停止運動.過點P作直線PE∥OC,與折線O﹣B﹣A交于點E.設點P運動的時間為t(秒).求當以B、D、E為頂點的三角形是直角三角形時點E的坐標.24.(10分)如圖,⊙O的直徑DF與弦AB交于點E,C為⊙O外一點,CB⊥AB,G是直線CD上一點,∠ADG=∠ABD.求證:AD?CE=DE?DF;說明:(1)如果你經(jīng)歷反復探索,沒有找到解決問題的方法,請你把探索過程中的某種思路過程寫出來(要求至少寫3步);(2)在你經(jīng)歷說明(1)的過程之后,可以從下列①、②、③中選取一個補充或更換已知條件,完成你的證明.①∠CDB=∠CEB;②AD∥EC;③∠DEC=∠ADF,且∠CDE=90°.25.(10分)商場某種商品平均每天可銷售30件,每件盈利50元.為了盡快減少庫存,商場決定采取適當?shù)慕祪r措施.經(jīng)調(diào)查發(fā)現(xiàn),每件商品每降價1元,商場平均每天可多售出2件.設每件商品降價x元.據(jù)此規(guī)律,請回答:(1)商場日銷售量增加▲件,每件商品盈利▲元(用含x的代數(shù)式表示);(2)在上述條件不變、銷售正常情況下,每件商品降價多少元時,商場日盈利可達到2100元?26.(12分)已知:如圖,在△ABC中,∠ACB=90°,以BC為直徑的⊙O交AB于點D,E為的中點.求證:∠ACD=∠DEC;(2)延長DE、CB交于點P,若PB=BO,DE=2,求PE的長27.(12分)小明和小剛玩“石頭、剪刀、布”的游戲,每一局游戲雙方各自隨機做出“石頭”、“剪刀”、“布”三種手勢的一種,規(guī)定“石頭”勝“剪刀”,“剪刀”勝“布”,“布”勝“石頭”,相同的手勢是和局.(1)用樹形圖或列表法計算在一局游戲中兩人獲勝的概率各是多少?(2)如果兩人約定:只要誰率先勝兩局,就成了游戲的贏家.用樹形圖或列表法求只進行兩局游戲便能確定贏家的概率.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】

先解出不等式,然后根據(jù)最小整數(shù)解為2得出關(guān)于m的不等式組,解之即可求得m的取值范圍.【詳解】解:解不等式3x﹣m+1>0,得:x>,∵不等式有最小整數(shù)解2,∴1≤<2,解得:4≤m<7,故選A.【點睛】本題考查了一元一次不等式的整數(shù)解,解一元一次不等式組,正確解不等式,熟練掌握一元一次不等式、一元一次不等式組的解法是解答本題的關(guān)鍵.2、B【解析】解:從上面看,上面一排有兩個正方形,下面一排只有一個正方形,故選B.3、D【解析】

根據(jù)題意得出△ABE∽△CDE,進而利用相似三角形的性質(zhì)得出答案.【詳解】解:由題意可得:AE=2m,CE=0.5m,DC=1.5m,∵△ABC∽△EDC,∴DCAB即1.5AB解得:AB=6,故選:D.【點睛】本題考查的是相似三角形在實際生活中的應用,根據(jù)題意得出△ABE∽△CDE是解答此題的關(guān)鍵.4、C【解析】

根據(jù)二次函數(shù)的性質(zhì)y=a(x﹣h)2+k的頂點坐標是(h,k)進行求解即可.【詳解】∵拋物線解析式為y=3(x-2)2+5,∴二次函數(shù)圖象的頂點坐標是(2,5),故選C.【點睛】本題考查了二次函數(shù)的性質(zhì),根據(jù)拋物線的頂點式,可確定拋物線的開口方向,頂點坐標(對稱軸),最大(最小)值,增減性等.5、C【解析】

用科學記數(shù)法表示較大的數(shù)時,一般形式為a×10n,其中1≤|a|<10,n為整數(shù),據(jù)此判斷即可.【詳解】32400000=3.24×107元.

故選C.【點睛】此題主要考查了用科學記數(shù)法表示較大的數(shù),一般形式為a×10n,其中1≤|a|<10,確定a與n的值是解題的關(guān)鍵.6、A【解析】【分析】科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【詳解】2180000的小數(shù)點向左移動6位得到2.18,所以2180000用科學記數(shù)法表示為2.18×106,故選A.【點睛】本題考查科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關(guān)鍵要正確確定a的值以及n的值.7、D【解析】分析:根據(jù)中位數(shù)和眾數(shù)的定義求解:眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù),注意眾數(shù)可以不止一個;找中位數(shù)要把數(shù)據(jù)按從小到大的順序排列,位于最中間的一個數(shù)(或兩個數(shù)的平均數(shù))為中位數(shù).詳解:將數(shù)據(jù)重新排列為17、18、18、20、20、20、23,所以這組數(shù)據(jù)的眾數(shù)為20分、中位數(shù)為20分,故選:D.點睛:本題考查了確定一組數(shù)據(jù)的中位數(shù)和眾數(shù)的能力.一些學生往往對這個概念掌握不清楚,計算方法不明確而誤選其它選項,注意找中位數(shù)的時候一定要先排好順序,然后再根據(jù)奇數(shù)和偶數(shù)個來確定中位數(shù),如果數(shù)據(jù)有奇數(shù)個,則正中間的數(shù)字即為所求,如果是偶數(shù)個則找中間兩位數(shù)的平均數(shù).8、D【解析】

解決本題抓住旋轉(zhuǎn)的三要素:旋轉(zhuǎn)中心O,旋轉(zhuǎn)方向順時針,旋轉(zhuǎn)角度90°,通過畫圖得A′.【詳解】由圖知A點的坐標為(-3,1),根據(jù)旋轉(zhuǎn)中心O,旋轉(zhuǎn)方向順時針,旋轉(zhuǎn)角度90°,畫圖,從而得A′點坐標為(1,3).故選D.9、B【解析】

在平面內(nèi),如果一個圖形沿一條直線對折,直線兩旁的部分能夠完全重合,這樣的圖形叫做軸對稱圖形;在平面內(nèi)一個圖形繞某個點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)前后的圖形能互相重合,那么這個圖形叫做中心對稱圖形,分別判斷各選項即可解答.【詳解】解:A、等邊三角形是軸對稱圖形,不是中心對稱圖形,故此選項錯誤;B、菱形是軸對稱圖形,也是中心對稱圖形,故此選項正確;C、平行四邊形不是軸對稱圖形,是中心對稱圖形,故此選項錯誤;D、正五邊形是軸對稱圖形,不是中心對稱圖形,故此選項錯誤.故選:B.【點睛】本題考查了軸對稱圖形和中心對稱圖形的定義,熟練掌握是解題的關(guān)鍵.10、A【解析】

根據(jù)已知得出直徑是的圓形鐵皮,被分成三個圓心角為半徑是30cm的扇形,再根據(jù)扇形弧長等于圓錐底面圓的周長即可得出答案?!驹斀狻恐睆绞堑膱A形鐵皮,被分成三個圓心角為半徑是30cm的扇形假設每個圓錐容器的地面半徑為解得故答案選A.【點睛】本題考查扇形弧長的計算方法和扇形圍成的圓錐底面圓的半徑的計算方法。11、B【解析】

根據(jù)合并同類項法則、同底數(shù)冪的除法、同底數(shù)冪的乘法及冪的乘方逐一計算即可判斷.【詳解】.,此選項不符合題意;.,此選項符合題意;.,此選項不符合題意;.,此選項不符合題意;故選:.【點睛】本題考查了整式的運算,解題的關(guān)鍵是掌握合并同類項法則、同底數(shù)冪的除法、同底數(shù)冪的乘法及冪的乘方.12、D【解析】試題分析:根據(jù)根的判別式和根與系數(shù)的關(guān)系列出不等式,求出解集.解:∵關(guān)于x的一元二次方程x2+2x+k+1=0有兩個實根,∴△≥0,∴4﹣4(k+1)≥0,解得k≤0,∵x1+x2=﹣2,x1?x2=k+1,∴﹣2﹣(k+1)<﹣1,解得k>﹣2,不等式組的解集為﹣2<k≤0,在數(shù)軸上表示為:,故選D.點評:本題考查了根的判別式、根與系數(shù)的關(guān)系,在數(shù)軸上找到公共部分是解題的關(guān)鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】試題解析:根據(jù)題意得:故答案為14、12.2【解析】

∵△ABC是邊長為1的等腰直角三角形,∴S△ABC=×1×1==11-1;AC==,AD==1,∴S△ACD==1=11-1∴第n個等腰直角三角形的面積是1n-1.∴S△AEF=14-1=4,S△AFG=12-1=8,由這五個等腰直角三角形所構(gòu)成的圖形的面積為+1+1+4+8=12.2.故答案為12.2.15、1.57×1【解析】

科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【詳解】將1570000用科學記數(shù)法表示為1.57×1.故答案為1.57×1.【點睛】此題考查科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關(guān)鍵要正確確定a的值以及n的值.16、【解析】解:將170000用科學記數(shù)法表示為:1.7×1.故答案為1.7×1.17、1【解析】分析:根據(jù)負數(shù)的絕對值等于這個數(shù)的相反數(shù),即可得出答案.解答:解:|-1|=1.故答案為1.18、.【解析】試題分析:此題是求陰影部分的面積占正方形面積的幾分之幾,即為所求概率.陰影部分的面積為:3×1÷2×4=6,因為正方形對角線形成4個等腰直角三角形,所以邊長是=,∴這個點取在陰影部分的概率為:6÷=6÷18=.考點:求隨機事件的概率.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1);(2)①有最大值1;②(2,3)或(,)【解析】

(1)根據(jù)自變量與函數(shù)值的對應關(guān)系,可得A,C點坐標,根據(jù)代定系數(shù)法,可得函數(shù)解析式;(2)①根據(jù)相似三角形的判定與性質(zhì),可得,根據(jù)平行于y軸直線上兩點間的距離是較大的縱坐標減較小的縱坐標,可得二次函數(shù),根據(jù)二次函數(shù)的性質(zhì),可得答案;②根據(jù)勾股定理的逆定理得到△ABC是以∠ACB為直角的直角三角形,取AB的中點D,求得D(,0),得到DA=DC=DB=,過P作x軸的平行線交y軸于R,交AC于G,情況一:如圖,∠PCF=2∠BAC=∠DGC+∠CDG,情況二,∠FPC=2∠BAC,解直角三角形即可得到結(jié)論.【詳解】(1)當x=0時,y=2,即C(0,2),當y=0時,x=4,即A(4,0),將A,C點坐標代入函數(shù)解析式,得,解得,拋物線的解析是為;

(2)過點P向x軸做垂線,交直線AC于點M,交x軸于點N,∵直線PN∥y軸,∴△PEM~△OEC,∴把x=0代入y=-x+2,得y=2,即OC=2,設點P(x,-x2+x+2),則點M(x,-x+2),∴PM=(-x2+x+2)-(-x+2)=-x2+2x=-(x-2)2+2,∴=,∵0<x<4,∴當x=2時,=有最大值1.②∵A(4,0),B(-1,0),C(0,2),∴AC=2,BC=,AB=5,∴AC2+BC2=AB2,∴△ABC是以∠ACB為直角的直角三角形,取AB的中點D,∴D(,0),∴DA=DC=DB=,∴∠CDO=2∠BAC,∴tan∠CDO=tan(2∠BAC)=,過P作x軸的平行線交y軸于R,交AC的延長線于G,情況一:如圖,∴∠PCF=2∠BAC=∠PGC+∠CPG,∴∠CPG=∠BAC,∴tan∠CPG=tan∠BAC=,即,令P(a,-a2+a+2),∴PR=a,RC=-a2+a,∴,∴a1=0(舍去),a2=2,∴xP=2,-a2+a+2=3,P(2,3)情況二,∴∠FPC=2∠BAC,∴tan∠FPC=,設FC=4k,∴PF=3k,PC=5k,∵tan∠PGC=,∴FG=6k,∴CG=2k,PG=3k,∴RC=k,RG=k,PR=3k-k=k,∴,∴a1=0(舍去),a2=,xP=,-a2+a+2=,即P(,),綜上所述:P點坐標是(2,3)或(,).【點睛】本題考查了二次函數(shù)綜合題,解(1)的關(guān)鍵是待定系數(shù)法;解(2)的關(guān)鍵是利用相似三角形的判定與性質(zhì)得出,又利用了二次函數(shù)的性質(zhì);解(3)的關(guān)鍵是利用解直角三角形,要分類討論,以防遺漏.20、50千米/小時.【解析】

根據(jù)題中等量關(guān)系:貨車行駛25千米與小車行駛35千米所用時間相同,列出方程求解即可.【詳解】解:設貨車的速度為x千米/小時,依題意得:解:根據(jù)題意,得

解得:x=50經(jīng)檢驗x=50是原方程的解.答:貨車的速度為50千米/小時.【點睛】本題考查了分式方程的應用,找出題中的等量關(guān)系,列出關(guān)系式是解題的關(guān)鍵.21、(1)①特殊情形:;②類比探究:是定值,理由見解析;(2)或【解析】

(1)證明,即可求解;(2)點E與點B重合時,四邊形EBFA為矩形,即可求解;(3)分時、時,兩種情況分別求解即可.【詳解】解:(1),,故答案為;(2)點E與點B重合時,四邊形EBFA為矩形,則為定值;(3)①當時,如圖3,過點E、F分別作直線BC的垂線交于點G,H,由(1)知:,,同理,.則,則;②當時,如圖4,,則,,則,,則,故或.【點睛】本題考查的圓知識的綜合運用,涉及到解直角三角形的基本知識,其中(3),要注意分類求解,避免遺漏.22、客房8間,房客63人【解析】

設該店有間客房,以人數(shù)相等為等量關(guān)系列出方程即可.【詳解】設該店有間客房,則解得答:該店有客房8間,房客63人.【點睛】本題考查的是利用一元一次方程解決應用題,根據(jù)題意找到等量關(guān)系式是解題的關(guān)鍵.23、(4)4;(2);(4)點E的坐標為(4,2)、(,)、(4,2).【解析】分析:(4)過點B作BH⊥OA于H,如圖4(4),易證四邊形OCBH是矩形,從而有OC=BH,只需在△AHB中運用三角函數(shù)求出BH即可.(2)過點B作BH⊥OA于H,過點G作GF⊥OA于F,過點B作BR⊥OG于R,連接MN、DG,如圖4(2),則有OH=2,BH=4,MN⊥OC.設圓的半徑為r,則MN=MB=MD=r.在Rt△BHD中運用勾股定理可求出r=2,從而得到點D與點H重合.易證△AFG∽△ADB,從而可求出AF、GF、OF、OG、OB、AB、BG.設OR=x,利用BR2=OB2﹣OR2=BG2﹣RG2可求出x,進而可求出BR.在Rt△ORB中運用三角函數(shù)就可解決問題.(4)由于△BDE的直角不確定,故需分情況討論,可分三種情況(①∠BDE=90°,②∠BED=90°,③∠DBE=90°)討論,然后運用相似三角形的性質(zhì)及三角函數(shù)等知識建立關(guān)于t的方程就可解決問題.詳解:(4)過點B作BH⊥OA于H,如圖4(4),則有∠BHA=90°=∠COA,∴OC∥BH.∵BC∥OA,∴四邊形OCBH是矩形,∴OC=BH,BC=OH.∵OA=6,BC=2,∴AH=0A﹣OH=OA﹣BC=6﹣2=4.∵∠BHA=90°,∠BAO=45°,∴tan∠BAH==4,∴BH=HA=4,∴OC=BH=4.故答案為4.(2)過點B作BH⊥OA于H,過點G作GF⊥OA于F,過點B作BR⊥OG于R,連接MN、DG,如圖4(2).由(4)得:OH=2,BH=4.∵OC與⊙M相切于N,∴MN⊥OC.設圓的半徑為r,則MN=MB=MD=r.∵BC⊥OC,OA⊥OC,∴BC∥MN∥OA.∵BM=DM,∴CN=ON,∴MN=(BC+OD),∴OD=2r﹣2,∴DH==.在Rt△BHD中,∵∠BHD=90°,∴BD2=BH2+DH2,∴(2r)2=42+(2r﹣4)2.解得:r=2,∴DH=0,即點D與點H重合,∴BD⊥0A,BD=AD.∵BD是⊙M的直徑,∴∠BGD=90°,即DG⊥AB,∴BG=AG.∵GF⊥OA,BD⊥OA,∴GF∥BD,∴△AFG∽△ADB,∴===,∴AF=AD=2,GF=BD=2,∴OF=4,∴OG===2.同理可得:OB=2,AB=4,∴BG=AB=2.設OR=x,則RG=2﹣x.∵BR⊥OG,∴∠BRO=∠BRG=90°,∴BR2=OB2﹣OR2=BG2﹣RG2,∴(2)2﹣x2=(2)2﹣(2﹣x)2.解得:x=,∴BR2=OB2﹣OR2=(2)2﹣()2=,∴BR=.在Rt△ORB中,sin∠BOR===.故答案為.(4)①當∠BDE=90°時,點D在直線PE上,如圖2.此時DP=OC=4,BD+OP=BD+CD=BC=2,BD=t,OP=t.則有2t=2.解得:t=4.則OP=CD=DB=4.∵DE∥OC,∴△BDE∽△BCO,∴==,∴DE=2,∴EP=2,∴點E的坐標為(4,2).②當∠BED=90°時,如圖4.∵∠DBE=OBC,∠DEB=∠BCO=90°,∴△DBE∽△OBC,∴==,∴BE=t.∵PE∥OC,∴∠OEP=∠BOC.∵∠OPE=∠BCO=90°,∴△OPE∽△BCO,∴==,∴OE=t.∵OE+BE=OB=2t+t=2.解得:t=,∴OP=,OE=,∴PE==,∴點E的坐標為().③當∠DBE=90°時,如圖4.此時PE=PA=6﹣t,OD=OC+BC﹣t=6﹣t.則有OD=PE,EA==(6﹣t)=6﹣t,∴BE=BA﹣EA=4﹣(6﹣t)=t﹣2.∵PE∥OD,OD=PE,∠DOP=90°,∴四邊形ODEP是矩形,∴DE=OP=t,DE∥OP,∴∠BED=∠BAO=45°.在Rt△DBE中,cos∠BED==,∴DE=BE,∴t=t﹣2)=2t﹣4.解得:t=4,∴OP=4,PE=6﹣4=2,∴點E的坐標為(4,2).綜上所述:當以B、D、E為頂點的三角形是直角三角形時點E的坐標為(4,2)、()、(4,2).點睛:本題考查了圓周角定理、切線的性質(zhì)、相似三角形的判定與性質(zhì)、三角函數(shù)的定義、平行線分線段成比例、矩形的判定與性質(zhì)、勾股定理等知識,還考查了分類討論的數(shù)學思想,有一定的綜合性.24、(1)見解析;(2)見解析.【解析】

連接AF,由直徑所對的圓周角是直角、同弧所對的圓周角相等的性質(zhì),證得直線CD是⊙O的切線,若證AD?CE=DE?DF,只要征得△ADF∽△DEC即可.在第一問中只能證得∠EDC=∠DAF=90°,所以在第二問中只要證得∠DEC=∠ADF即可解答此題.【詳解】(1)連接AF,∵DF是⊙O的直徑,∴∠DAF=90°,∴∠F+∠ADF=90°,∵∠F=∠ABD,∠ADG=∠ABD

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論