




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2025屆云南省河口縣第一中學(xué)數(shù)學(xué)高二上期末監(jiān)測模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知拋物線內(nèi)一點,過點的直線交拋物線于,兩點,且點為弦的中點,則直線的方程為()A. B.C D.2.已知直線l:,則下列結(jié)論正確的是()A.直線l的傾斜角是B.直線l在x軸上的截距為1C.若直線m:,則D.過與直線l平行的直線方程是3.七巧板是中國古代勞動人民發(fā)明的一種傳統(tǒng)智力玩具,它由五塊等腰直角三角形、一塊正方形和一塊平行四邊形共七塊板組成如圖是一個用七巧板拼成的正方形,若在此正方形中任取一點,則此點取自陰影部分的概率為()A. B.C. D.4.閱讀如圖所示程序框圖,運行相應(yīng)的程序,輸出S的結(jié)果是()A.128 B.64C.16 D.325.函數(shù)y=ln(1﹣x)的圖象大致為()A. B.C D.6.拋物線上有兩個點,焦點,已知,則線段的中點到軸的距離是()A.1 B.C.2 D.7.命題:“x>0,都有x2-x+1≤0”的否定是()A.x>0,使得x2-x+1≤0 B.x>0,使得x2-x+1>0C.x>0,都有x2-x+1>0 D.x≤0,都有x2-x+1>08.已知函數(shù)有兩個不同的零點,則實數(shù)的取值范圍是()A B.C. D.9.在中,,,且BC邊上的高為,則滿足條件的的個數(shù)為()A.3 B.2C.1 D.010.若,則的最小值為()A.1 B.2C.3 D.411.命題:“,”的否定是()A., B.,C., D.,12.如圖,是邊長為4的等邊三角形的中位線,將沿折起,使得點A與P重合,平面平面,則四棱錐外接球的表面積是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知直線:與直線:平行,則的值為___________.14.若點為圓上的一個動點,則點到直線距離的最大值為________15.在一平面直角坐標(biāo)系中,已知,現(xiàn)沿x軸將坐標(biāo)平面折成60°的二面角,則折疊后A,B兩點間的距離為___________.16.在棱長為2的正方體ABCD-A1B1C1D1中,E,F(xiàn)分別為棱AA1,BB1的中點,G為棱A1B1上的一點,且A1G=(0<<2),則點G到平面D1EF的距離為____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知圓.(1)求過點M(2,1)的圓的切線方程;(2)直線過點且被圓截得的弦長為2,求直線的方程;(3)已知圓的圓心在直線y=1上,與y軸相切,且與圓相外切,求圓的標(biāo)準(zhǔn)方程.18.(12分)設(shè)四邊形為矩形,點為平面外一點,且平面,若,.(1)求與平面所成角的大??;(2)在邊上是否存在一點,使得點到平面的距離為,若存在,求出的值,若不存在,請說明理由;(3)若點是的中點,在內(nèi)確定一點,使的值最小,并求此時的值.19.(12分)已知圓C:,直線l:.(1)當(dāng)a為何值時,直線l與圓C相切;(2)當(dāng)直線l與圓C相交于A,B兩點,且時,求直線l的方程.20.(12分)已知定點,圓:,點Q為圓上動點,線段MQ的垂直平分線交NQ于點P,記P的軌跡為曲線C(1)求曲線C的方程;(2)過點M與N作平行直線和,分別交曲線C于點A,B和點D,E,求四邊形ABDE面積的最大值21.(12分)已知圓C的圓心在直線上,且過點.(1)求圓C的方程;(2)若圓C與直線交于A,B兩點,且,求m的值.22.(10分)已知直線l過定點(1)若直線l與直線垂直,求直線l的方程;(2)若直線l在兩坐標(biāo)軸上的截距相等,求直線l的方程
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】利用點差法求出直線斜率,即可得出直線方程.【詳解】設(shè),則,兩式相減得,即,則直線方程為,即.故選:B.2、D【解析】A.將直線方程的一般式化為斜截式可得;B.令y=0可得;C.求出直線m斜率即可判斷;D.設(shè)要求直線的方程為,將代入即可.【詳解】根據(jù)題意,依次分析選項:對于A,直線l:,即,其斜率,則傾斜角是,A錯誤;對于B,直線l:,令y=0,可得,l在x軸上的截距為,B錯誤;對于C,直線m:,其斜率,,故直線m與直線l不垂直,C錯誤;對于D,設(shè)要求直線的方程為,將代入,可得t=0,即要求直線為,D正確;故選:D3、D【解析】設(shè)正方形的邊長為,計算出陰影部分區(qū)域的面積和正方形區(qū)域的面積,然后利用幾何概型的概率公式計算出所求事件的概率.【詳解】設(shè)大正方形的邊長為,則面積為,陰影部分由一個大等腰直角三角形和一個梯形組成大等腰直角三角形的面積為,梯形的上底為,下底為,高為,面積為,故所求概率故選:D.4、C【解析】根據(jù)程序框圖的循環(huán)邏輯寫出執(zhí)行步驟,即可確定輸出結(jié)果.【詳解】根據(jù)流程圖的執(zhí)行邏輯,其執(zhí)行步驟如下:1、成立,則;2、成立,則;3、成立,則;4、成立,則;5、不成立,輸出;故選:C5、C【解析】根據(jù)函數(shù)的定義域和特殊點,判斷出正確選項.【詳解】由,解得,也即函數(shù)的定義域為,由此排除A,B選項.當(dāng)時,,由此排除D選項.所以正確的為C選項.故選:C【點睛】本小題主要考查函數(shù)圖像識別,屬于基礎(chǔ)題.6、B【解析】利用拋物線的定義,將拋物線上的點到焦點的距離轉(zhuǎn)化為點到準(zhǔn)線的距離,即可求出線段中點的橫坐標(biāo),即得到答案.【詳解】由已知可得拋物線的準(zhǔn)線方程為,設(shè)點的坐標(biāo)分別為和,由拋物線的定義得,即,線段中點的橫坐標(biāo)為,故線段的中點到軸的距離是.故選:.7、B【解析】全稱命題的否定是特稱命題,把任意改為存在,把結(jié)論否定.【詳解】“x>0,都有x2-x+1≤0”的否定是“x>0,使得x2-x+1>0”.故選:B8、A【解析】分離參數(shù),求函數(shù)的導(dǎo)數(shù),根據(jù)函數(shù)有兩個零點可知函數(shù)的單調(diào)性,即可求解.【詳解】由題意得有兩個零點令,則且所以,在上為增函數(shù),可得,當(dāng),在上單調(diào)遞減,可得,即要有兩個零點有兩個零點,實數(shù)的取值范圍是.故選:A【點睛】方法點睛:已知函數(shù)有零點求參數(shù)取值范圍常用的方法和思路(1)直接法:直接根據(jù)題設(shè)條件構(gòu)建關(guān)于參數(shù)的不等式,再通過解不等式確定參數(shù)范圍;(2)分離參數(shù)法:先將參數(shù)分離,轉(zhuǎn)化成求函數(shù)值域問題加以解決;(3)數(shù)形結(jié)合法:先對解析式變形,在同一平面直角坐標(biāo)系中,畫出函數(shù)的圖象,然后數(shù)形結(jié)合求解9、B【解析】利用等面積法求得,再利用正弦定理求得,利用內(nèi)角和的關(guān)系及兩角和差化積公式,二倍角公式轉(zhuǎn)化為,再利用正弦函數(shù)的性質(zhì)求滿足條的的個數(shù),即可求解.【詳解】由三角形的面積公式知,即由正弦定理知所以,即,即,即利用兩角和的正弦公式結(jié)合二倍角公式化簡得又,則,,且由正弦函數(shù)的性質(zhì)可知,滿足的有2個,即滿足條件的的個數(shù)為2.故選:B10、D【解析】由基本不等式求解即可.【詳解】,當(dāng)且僅當(dāng)時,取等號.即所求最小值.故選:D11、D【解析】利用全稱量詞命題的否定可得出結(jié)論.【詳解】由全稱量詞命題的否定可知,命題“,”的否定是“,”.故選:D.12、A【解析】分別取的中點,易得,則點為四邊形的外接圓的圓心,則四棱錐外接球的球心在過點且垂直平面的直線上,設(shè)球心為,設(shè)外接球的半徑為,,利用勾股定理求得半徑,從而可得出答案.【詳解】解:分別取的中點,在等邊三角形中,,是中位線,則都是等邊三角形,所以,所以點為四邊形的外接圓的圓心,則四棱錐外接球的球心在過點且垂直平面的直線上,設(shè)球心為,由為的中點,所以,因為平面平面,且平面平面,平面,所以平面,則,設(shè)外接球半徑為,,,則,,所以,解得,所以,所以四棱錐外接球的表面積是.故選:A.第II卷二、填空題:本題共4小題,每小題5分,共20分。13、-1【解析】根據(jù)兩直線平行的條件列式求解即可.【詳解】由題意可知,的斜率,的斜率,∵,∴解得.故當(dāng)時,直線:與直線:平行.故答案為:-1.14、7【解析】根據(jù)給定條件求出圓C的圓心C到直線l的距離即可計算作答.【詳解】圓的圓心,半徑,點C到直線的距離,所以圓C上點P到直線l距離的最大值為.故答案為:715、【解析】平面直角坐標(biāo)系中,沿軸將坐標(biāo)平面折成的二面角后,在平面上的射影為,作軸,交軸于點,通過用向量的數(shù)量積轉(zhuǎn)化求解距離即可.【詳解】在直角坐標(biāo)系中,已知,現(xiàn)沿軸將坐標(biāo)平面折成的二面角后,在平面上的射影為,作軸,交軸于點,所以,所以,所以,故答案為:16、【解析】先證明A1B1∥平面D1EF,進(jìn)而將問題轉(zhuǎn)化為求點A1到平面D1EF的距離,然后建立空間直角坐標(biāo)系,通過空間向量的運算求得答案.【詳解】由題意得A1B1∥EF,A1B1?平面D1EF,EF?平面D1EF,所以A1B1∥平面D1EF,則點G到平面D1EF的距離等于點A1到平面D1EF的距離.以D為坐標(biāo)原點,DA,DC,DD1所在直線分別為x軸,y軸,z軸建立空間直角坐標(biāo)系D-xyz,則D1(0,0,2),E(2,0,1),F(xiàn)(2,2,1),A1(2,0,2),所以,,.設(shè)平面D1EF的法向量為,則,令x=1,則y=0,z=2,所以平面D1EF的一個法向量.點A1到平面D1EF的距離==,即點G到平面D1EF的距離為.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)y=1;(2)x+y-2=0;(3).【解析】(1)將圓的一般方程化為圓的標(biāo)準(zhǔn)方程,結(jié)合圖形即可求出結(jié)果;(2)根據(jù)題意可知直線過圓心,利用直線的兩點式方程計算即可得出結(jié)果;(3)設(shè)圓E的圓心E(a,1),根據(jù)題意可得圓E的半徑為,結(jié)合圓與圓的位置關(guān)系和兩點距離公式計算求出,進(jìn)而得出圓的標(biāo)準(zhǔn)方程.【小問1詳解】圓,即,其圓心為,半徑為1.因為點(2,1)在圓上,如圖,所以切線方程為y=1;【小問2詳解】由題意得,圓的直徑為2,所以直線過圓心,由直線的兩點式方程,得,即直線的方程為x+y-2=0;【小問3詳解】因為圓E的圓心在直線y=1上,設(shè)圓E的圓心E(a,1),由圓E與y軸相切,得R=a()又圓E與圓相外切,所以,由兩點距離公式得,所以,解得,所以圓心,,所以圓E的方程為.18、(1)(2)存在,距離為(3)位置答案見解析,【解析】(1)利用線面垂直的判定定理證明平面,然后由線面角的定義得到PC與平面PAD所成的角為,在中,由邊角關(guān)系求解即可.(2)假設(shè)BC邊上存在一點G滿足題設(shè)條件,不放設(shè),則,再根據(jù)得,進(jìn)而得答案.(3)延長CB到C',使得C'B=CB,連結(jié)C'E,過E作于E',利用三點共線,兩線段和最小,得到,過H作于H',連結(jié)HB,在中,求解HB即可.【小問1詳解】解:因為平面,平面,所以,又因為底面是矩形,所以,又平面,所以平面,故與平面所成的角為,因為,,所以故直線PC與平面PAD所成角的大小為;【小問2詳解】解:假設(shè)BC邊上存在一點G滿足題設(shè)條件,不妨設(shè),則因為平面,到平面的距離為所以,即因為代入數(shù)據(jù)解得,即,故存在點G,當(dāng)時,使得點D到平面PAG的距離為;【小問3詳解】解:延長CB到C',使得C'B=CB,連結(jié)C'E,過E作于E',則,當(dāng)且僅當(dāng)三點共線時等號成立,故,過H作于H',連結(jié)HB,在中,,,所以.19、(1);(2)或.【解析】(1)根據(jù)圓心到直線的距離d等于圓的半徑r即可求得答案;(2)由并結(jié)合(1)即可求得答案.【小問1詳解】由圓:,可得,其圓心為,半徑,若直線與圓相切,則圓心到直線:距離,即,可得:.【小問2詳解】由(1)知圓心到直線的距離,因為,即,解得:,所以,整理可得:,解得:或,則直線的方程為或.20、(1)(2)6【解析】(1)由橢圓的定義求解(2)設(shè)直線方程后與橢圓方程聯(lián)立,由韋達(dá)定理表示弦長,將面積轉(zhuǎn)化為函數(shù)后求求解【小問1詳解】由題意可得,所以動點P的軌跡是以M,N為焦點,長軸長為4的橢圓,即曲線C的方程為:;【小問2詳解】由題意可設(shè)的方程為,聯(lián)立方程得,設(shè),,則由根與系數(shù)關(guān)系有,所以,根據(jù)橢圓的對稱性可得,與的距離即為點M到直線的距離,為,所以四邊形ABDE面積為,令得,由對勾函數(shù)性質(zhì)可知:當(dāng)且僅當(dāng),即時,四邊形ABDE面積取得最大值為6.21、(1)(2)或【解析】(1)由已知設(shè)圓C的方程為,點代入計算即可得出結(jié)果.(2)由已知可得圓心C到直線的距離,利用點到直線的距離公式計算即可求得值.【小問1詳解】設(shè)圓心
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年購房合同全新(4篇)
- 2025年北京市東城區(qū)中考語文一模試卷
- 操作數(shù)據(jù)庫項目五34課件
- 考研復(fù)習(xí)-風(fēng)景園林基礎(chǔ)考研試題附參考答案詳解(預(yù)熱題)
- 考研復(fù)習(xí)-風(fēng)景園林基礎(chǔ)考研試題(考試直接用)附答案詳解
- 風(fēng)景園林基礎(chǔ)考研資料試題及參考答案詳解(完整版)
- 《風(fēng)景園林招投標(biāo)與概預(yù)算》試題A帶答案詳解(滿分必刷)
- 2025-2026年高校教師資格證之《高等教育法規(guī)》通關(guān)題庫附答案詳解(培優(yōu))
- 2024年濱州新能源集團(tuán)有限責(zé)任公司及權(quán)屬公司公開招聘工作人員遞補(bǔ)筆試備考題庫含答案詳解(精練)
- 2023國家能源投資集團(tuán)有限責(zé)任公司第一批社會招聘筆試備考題庫附答案詳解(培優(yōu))
- 室外燈箱安裝合同協(xié)議
- 2024年小升初考試試卷
- 包蟲病防治知識小學(xué)課件
- 《餐飲行業(yè)安全生產(chǎn)標(biāo)準(zhǔn)化評定標(biāo)準(zhǔn)與實施》
- 挖機(jī)簡單租賃合同8篇
- 高職院校課程設(shè)置存在的問題及改革建議
- 中職高教版(2023)世界歷史-第13課-資本主義世界殖民體系的建立與亞非拉民族獨立運動【課件】
- 辦公軟件基礎(chǔ)課件
- 四新安全教育培訓(xùn)材料
- 2025上海市商業(yè)店鋪出租合同(合同版本)
- 高??蒲姓\信教育
評論
0/150
提交評論