




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
安徽省淮南四中2025屆高二上數(shù)學期末質(zhì)量跟蹤監(jiān)視模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.等差數(shù)列x,,,…的第四項為()A.5 B.6C.7 D.82.下列曲線中,與雙曲線有相同漸近線是()A. B.C. D.3.已知集合,集合或,是實數(shù)集,則()A. B.C. D.4.下列雙曲線中,漸近線方程為的是A. B.C. D.5.直線與圓的位置關(guān)系是()A.相交 B.相切C.相離 D.相交或相切6.據(jù)記載,歐拉公式是由瑞士著名數(shù)學家歐拉發(fā)現(xiàn)的,該公式被譽為“數(shù)學中的天橋”特別是當時,得到一個令人著迷的優(yōu)美恒等式,將數(shù)學中五個重要的數(shù)(自然對數(shù)的底,圓周率,虛數(shù)單位,自然數(shù)的單位和零元)聯(lián)系到了一起,有些數(shù)學家評價它是“最完美的數(shù)學公式”.根據(jù)歐拉公式,復數(shù)的虛部()A. B.C. D.7.已知函數(shù)在處取得極值,則()A. B.C. D.8.(2016新課標全國Ⅱ理科)已知F1,F(xiàn)2是雙曲線E:的左,右焦點,點M在E上,MF1與軸垂直,sin,則E的離心率為A. B.C. D.29.若圓的半徑為,則實數(shù)()A. B.-1C.1 D.10.已知函數(shù)對于任意的滿足,其中是函數(shù)的導函數(shù),則下列各式正確的是()A. B.C. D.11.過橢圓的左焦點作弦,則最短弦的長為()A. B.2C. D.412.設,命題“若,則或”的否命題是()A.若,則或B.若,則或C.若,則且D.若,則且二、填空題:本題共4小題,每小題5分,共20分。13.沈陽市某高中有高一學生600人,高二學生500人,高三學生550人,現(xiàn)對學生關(guān)于消防安全知識了解情況進行分層抽樣調(diào)查,若抽取了一個容量為n的樣本,其中高三學生有11人,則n的值等于________.14.過橢圓的一個焦點的弦與另一個焦點圍成的的周長是______15.若,均為正數(shù),且,(1)的最大值為;(2)的最小值為;(3)的最小值為;(4)的最小值為,則結(jié)論正確的是__________16.如圖,已知,分別是橢圓的左、右焦點,現(xiàn)以為圓心作一個圓恰好經(jīng)過橢圓的中心并且交橢圓于點,.若過點的直線是圓的切線,則橢圓的離心率為_________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設分別為橢圓的左右焦點,過的直線l與橢圓C相交于A,B兩點,直線的傾斜角為60度,到直線l的距離為(1)求橢圓C的焦距;(2)如果,求橢圓C的方程18.(12分)已知圓,直線(1)判斷直線與圓的位置關(guān)系;(2)若直線與圓交于不同兩點,且,求直線的方程19.(12分)在直角坐標系中,曲線C的參數(shù)方程為,(為參數(shù)),以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系.(1)寫出曲線C的極坐標方程;(2)已知直線與曲線C相交于A,B兩點,求.20.(12分)已知圓的圓心為,且圓經(jīng)過點(1)求圓的標準方程;(2)若圓:與圓恰有兩條公切線,求實數(shù)的取值范圍21.(12分)已知函數(shù).(1)求曲線在點處的切線方程;(2)求在區(qū)間上的最值.22.(10分)某校高二年級全體學生參加了一次數(shù)學測試,學校利用簡單隨機抽樣方法從甲班、乙班各抽取五名同學的數(shù)學測試成績(單位:分)得到如下莖葉圖,若甲、乙兩班數(shù)據(jù)的中位數(shù)相等且平均數(shù)也相等.(1)求出莖葉圖中m和n的值:(2)若從86分以上(不含86分)的同學中隨機抽出兩名,求此兩人都來自甲班的概率.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】根據(jù)等差數(shù)列的定義求出x,求出公差,即可求出第四項.【詳解】由題可知,等差數(shù)列公差d=(x+2)-x=2,故3x+6=x+2+2,故x=-1,故第四項為-1+(4-1)×2=5.故選:A.2、B【解析】求出已知雙曲線的漸近線方程,逐一驗證即可.【詳解】雙曲線的漸近線方程為,而雙曲線的漸近線方程為,雙曲線的漸近線方程為,雙曲線的漸近線方程為,雙曲線的漸近線方程為.故選:B3、A【解析】先化簡集合,再由集合的交集、補集運算求解即可【詳解】,或,故故選:A4、A【解析】由雙曲線的漸進線的公式可行選項A的漸進線方程為,故選A.考點:本題主要考查雙曲線的漸近線公式.5、A【解析】由直線恒過定點,且定點圓內(nèi),從而即可判斷直線與圓相交.【詳解】解:因為直線恒過定點,而,所以定點在圓內(nèi),所以直線與圓相交,故選:A.6、D【解析】由歐拉公式的定義和復數(shù)的概念進行求解.【詳解】由題意,得,則復數(shù)的虛部為.故選:D.7、B【解析】根據(jù)極值點處導函數(shù)為零可求解.【詳解】因為,則,由題意可知.經(jīng)檢驗滿足題意故選:B8、A【解析】由已知可得,故選A.考點:1、雙曲線及其方程;2、雙曲線的離心率.【方法點晴】本題考查雙曲線及其方程、雙曲線的離心率.,涉及方程思想、數(shù)形結(jié)合思想和轉(zhuǎn)化化歸思想,考查邏輯思維能力、等價轉(zhuǎn)化能力、運算求解能力,綜合性較強,屬于較難題型.由已知可得,利用雙曲線的定義和雙曲線的通徑公式,可以降低計算量,提高解題速度.9、B【解析】將圓的方程化為標準方程,即可求出半徑的表達式,從而可求出的值.【詳解】由題意,圓的方程可化為,所以半徑為,解得.故選:B.【點睛】本題考查圓的方程,考查學生的計算求解能力,屬于基礎題.10、C【解析】令,結(jié)合題意可得,利用導數(shù)討論函數(shù)的單調(diào)性,進而得出,變形即可得出結(jié)果.【詳解】令,則,又,所以,令,令,所以函數(shù)在上單調(diào)遞減,在單調(diào)遞增,所以,即,則.故選:C11、A【解析】求出橢圓的通徑,即可得到結(jié)果【詳解】過橢圓的左焦點作弦,則最短弦的長為橢圓的通徑:故選:A12、C【解析】根據(jù)否命題的定義直接可得.【詳解】根據(jù)否命題的定義可得命題“若,則或”的否命題是若,則且,故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、33【解析】根據(jù)分層抽樣的性質(zhì)進行求解即可.【詳解】因為抽取了一個容量為n的樣本,其中高三學生有11人,所以有,故答案為:3314、【解析】求得,利用橢圓的定義可得出的周長.【詳解】在橢圓中,,由題意可知,的周長為.故答案為:.15、(1)(2)(4).【解析】利用基本不等式求的最大值可判斷(1);利用“”的妙用以及基本不等式可判斷(2);將所求代數(shù)式轉(zhuǎn)化為關(guān)于的二次函數(shù)結(jié)合由二次函數(shù)的性質(zhì)可得最值判斷C、D,進而可得正確答案.【詳解】對于(1):因為,均為正數(shù),且,則有,當且僅當時等號成立,即的最大值為,故(1)正確;對于(2):因為,當且僅當時等號成立,即的最小值為,故(2)正確;對于(3):因為,所以,在上單調(diào)遞減,無最小值,故(3)不正確;對于(4):,當且僅當時等號成立,即的最小值為,故(4)正確.故答案為:(1)(2)(4).16、##【解析】根據(jù)給定條件探求出橢圓長軸長與其焦距的關(guān)系即可計算作答.【詳解】設橢圓長軸長為,焦距為,即,依題意,,而直線是圓的切線,即,則有,又點在橢圓上,即,因此,,從而有,所以橢圓的離心率為.故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)求得直線的方程,利用點到直線的距離列方程,由此求得,進而求得焦距.(2)聯(lián)立直線的方程和橢圓方程,化簡寫出根與系數(shù)關(guān)系,結(jié)合來求得,從而求得橢圓的方程.【小問1詳解】依題意,直線的方程為,到的距離為,所以焦距.【小問2詳解】由,消去并化簡得,設,則,,,,,所以,,,,,,,,,所以,所以橢圓的方程為.18、(1)直線與圓相交;(2)或【解析】(1)通過比較圓心到直線的距離與半徑的關(guān)系,不難發(fā)現(xiàn)直線和圓相交.(2)根據(jù)垂徑定理,得到圓心與直線的距離,進而列方程求解即可試題解析:(1)將圓方程化為標準方程,所以圓的圓心,半徑,圓心到直線的距離,因此直線與圓相交(2)設圓心到直線的距離為,則,又,解得所求直線為或考點:直線與圓的位置關(guān)系19、(1);(2).【解析】(1)首先將圓的參數(shù)方程華為普通方程,再轉(zhuǎn)化為極坐標方程即可.(2)首先聯(lián)立得到,再求的長度即可.【詳解】(1)將曲線C的參數(shù)方程,(為參數(shù))化為普通方程,得,極坐標方程為.(2)聯(lián)立方程組,消去得,設點A,B對應的極徑分別為,,則,,所以.20、(1);(2).【解析】(1)根據(jù)給定條件求出圓C的半徑,再直接寫出方程作答.(2)由給定條件可得圓C與圓O相交,由此列出不等式求解作答.【小問1詳解】依題意,圓C的半徑,所以圓的標準方程是:.【小問2詳解】圓:的圓心,半徑為,因圓與圓恰有兩條公切線,則有圓O與圓C相交,即,而,因此有,解得,所以實數(shù)的取值范圍是.21、(1)(2)最小值為0,最大值為4【解析】(1)利用導數(shù)求得切線方程.(2)結(jié)合導數(shù)求得在區(qū)間上的最值.【小問1詳解】,所以曲線在點處的切線方程為.【小問2詳解】,所以在區(qū)間遞增;在區(qū)間遞減,,所以在區(qū)間上的最小值為,最大值為.22、(1),(2)【解析】(1)根據(jù)莖葉圖得甲班中位數(shù)為,由此能求出,根據(jù)由,且,能求出.(2)甲班86分以上有2人,乙班86分以有2人,從86分以上(不含86分)的同學中隨機抽出兩名,用列舉法寫出基本事件總數(shù),再利用古典概型的概率計算公式即
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 甘肅有色冶金職業(yè)技術(shù)學院《文娛空間設計》2023-2024學年第二學期期末試卷
- 河北工程大學科信學院《電子綜合設計與制造》2023-2024學年第二學期期末試卷
- 淮北理工學院《國外馬克思主義專題研究》2023-2024學年第二學期期末試卷
- 青島大學《電視文藝節(jié)目編導》2023-2024學年第二學期期末試卷
- 運維安全相關(guān)崗位
- 授導型教學設計核心框架
- 2025年版權(quán)許可合同范本
- 2024年氣動量儀相關(guān)項目實施方案
- 與酒店培訓合同范例
- 2025中型酒店轉(zhuǎn)讓合同范本
- 2025年湖北省孝感市中考物理模擬試卷(3月份)(含解析)
- 數(shù)據(jù)庫應用技術(shù)-第三次形考作業(yè)(第10章~第11章)-國開-參考資料
- 設備調(diào)試工作流程
- 養(yǎng)老護理員的禮儀培訓課件
- 農(nóng)業(yè)水利工程基礎知識單選題100道及答案
- 四川樂山歷年中考語文現(xiàn)代文閱讀真題37篇(截至2024年)
- 特種設備安全管理的法律法規(guī)遵守培訓計劃
- 國家安全教育知到智慧樹章節(jié)測試課后答案2024年秋山東大學(威海)
- 護理一病一品匯報
- 機器學習與非線性方程-深度研究
- 駱駝祥子-(一)-劇本
評論
0/150
提交評論