2025屆山西省太原市重點(diǎn)中學(xué)數(shù)學(xué)高二上期末監(jiān)測(cè)試題含解析_第1頁(yè)
2025屆山西省太原市重點(diǎn)中學(xué)數(shù)學(xué)高二上期末監(jiān)測(cè)試題含解析_第2頁(yè)
2025屆山西省太原市重點(diǎn)中學(xué)數(shù)學(xué)高二上期末監(jiān)測(cè)試題含解析_第3頁(yè)
2025屆山西省太原市重點(diǎn)中學(xué)數(shù)學(xué)高二上期末監(jiān)測(cè)試題含解析_第4頁(yè)
2025屆山西省太原市重點(diǎn)中學(xué)數(shù)學(xué)高二上期末監(jiān)測(cè)試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩11頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2025屆山西省太原市重點(diǎn)中學(xué)數(shù)學(xué)高二上期末監(jiān)測(cè)試題考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知等差數(shù)列且,則數(shù)列的前13項(xiàng)之和為()A.26 B.39C.104 D.522.命題“對(duì)任何實(shí)數(shù),都有”的否定形式是()A.,使得B.,使得C.,使得D.,使得3.過(guò)點(diǎn)且垂直于直線的直線方程為()A. B.C. D.4.在三棱錐中,,,,若,,則()A. B.C. D.5.如圖所示,直三棱柱中,,,分別是,的中點(diǎn),,則與所成角的余弦值為()A. B.C. D.6.已知橢圓的右焦點(diǎn)為F,短軸的一個(gè)端點(diǎn)為P,直線與橢圓相交于A、B兩點(diǎn).若,點(diǎn)P到直線l的距離不小于,則橢圓C離心率的取值范圍為()A. B.C. D.7.?dāng)?shù)學(xué)家歌拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一直線上,且重心到外心的距離是重心到垂心距離的一半.這條直線被后人稱為三角形的歐拉線.已知的三個(gè)頂點(diǎn)分別為,,,則的歐拉線方程是()A. B.C. D.8.已知圓的方程為,圓的方程為,其中.那么這兩個(gè)圓的位置關(guān)系不可能為()A.外離 B.外切C.內(nèi)含 D.內(nèi)切9.直線的傾斜角為()A.60° B.30°C.120° D.150°10.球O為三棱錐的外接球,和都是邊長(zhǎng)為的正三角形,平面PBC平面ABC,則球的表面積為()A. B.C. D.11.在棱長(zhǎng)為2的正方體中,是棱上一動(dòng)點(diǎn),點(diǎn)是面的中心,則的值為()A.4 B.C.2 D.不確定12.直線的傾斜角大小為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.從正方體的8個(gè)頂點(diǎn)中選取4個(gè)作為項(xiàng)點(diǎn),可得到四面體的概率為_(kāi)_______14.若“x2-2x-8>0”是“x<m”的必要不充分條件,則m最大值為_(kāi)_______15.已知曲線在點(diǎn)處的切線與曲線相切,則______.16.設(shè)a為實(shí)數(shù),若直線與直線平行,則a值為_(kāi)_____.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為(t為參數(shù)),直線l與x軸交于點(diǎn)P.以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為(1)求直線l的普通方程與曲線C的直角坐標(biāo)方程;(2)若直線l與曲線C相交于A,B兩點(diǎn),求的值18.(12分)設(shè)數(shù)列滿足(1)求的通項(xiàng)公式;(2)記數(shù)列的前項(xiàng)和為,是否存在實(shí)數(shù),使得對(duì)任意恒成立.19.(12分)如圖所示,在四棱錐中,BC//平面PAD,,E是PD的中點(diǎn)(1)求證:CE//平面PAB;(2)若M是線段CE上一動(dòng)點(diǎn),則線段AD上是否存在點(diǎn),使MN//平面PAB?說(shuō)明理由20.(12分)已知是奇函數(shù).(1)求的值;(2)若,求的值21.(12分)已知的內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,且(1)求B;(2)若,求的面積的最大值22.(10分)已知雙曲線C的方程為(),離心率為.(1)求雙曲線的標(biāo)準(zhǔn)方程;(2)過(guò)的直線交曲線于兩點(diǎn),求的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】根據(jù)等差數(shù)列的性質(zhì)化簡(jiǎn)已知條件可得的值,再由等差數(shù)列前項(xiàng)和及等差數(shù)列的性質(zhì)即可求解.【詳解】由等差數(shù)列的性質(zhì)可得:,,所以由可得:,解得:,所以數(shù)列的前13項(xiàng)之和為,故選:A2、B【解析】可將原命題變成全稱命題形式,而全稱命題的否定為特稱命題,即可選出答案.【詳解】命題“對(duì)任何實(shí)數(shù),都有”,可寫成:,使得,此命題為全稱命題,故其否定形式為:,使得.故選:B.3、A【詳解】因?yàn)樗笾本€垂直于直線,又直線的斜率為,所以所求直線的斜率,所以直線方程為,即.故選:A【點(diǎn)睛】本題主要考查直線方程的求法,屬基礎(chǔ)題.4、B【解析】根據(jù)空間向量的基本定理及向量的運(yùn)算法則計(jì)算即可得出結(jié)果.【詳解】連接,因?yàn)?,所以,因?yàn)?,所以,所?故選:B5、A【解析】取的中點(diǎn)為,的中點(diǎn)為,然后可得或其補(bǔ)角即為與所成角,然后在中求出答案即可.【詳解】取的中點(diǎn)為,的中點(diǎn)為,,,所以或其補(bǔ)角即為與所成角,設(shè),則,,在,,故選:A6、D【解析】設(shè)橢圓的左焦點(diǎn)為,由題可得,由點(diǎn)P到直線l的距離不小于可得,進(jìn)而可求的范圍,即可得出離心率范圍.【詳解】設(shè)橢圓的左焦點(diǎn)為,P為短軸的上端點(diǎn),連接,如圖所示:由橢圓的對(duì)稱性可知,A,B關(guān)于原點(diǎn)對(duì)稱,則,又,∴四邊形為平行四邊形,∴,又,解得:,點(diǎn)P到直線l距離:,解得:,即,∴,∴.故選:D.【點(diǎn)睛】關(guān)鍵點(diǎn)睛:本題考查橢圓離心率的求解,解題的關(guān)鍵是由橢圓定義得出,再根據(jù)已知條件得出.7、B【解析】根據(jù)的三個(gè)頂點(diǎn)坐標(biāo),先求解出重心的坐標(biāo),然后再根據(jù)三個(gè)點(diǎn)坐標(biāo)求解任意兩條垂直平分線的方程,聯(lián)立方程,即可算出外心的坐標(biāo),最后根據(jù)重心和外心的坐標(biāo)使用點(diǎn)斜式寫出直線方程.【詳解】由題意可得的重心為.因?yàn)?,,所以線段的垂直平分線的方程為.因?yàn)椋?,所以直線的斜率,線段的中點(diǎn)坐標(biāo)為,則線段的垂直平分線的方程為.聯(lián)立,解得,則的外心坐標(biāo)為,故的歐拉線方程是,即故選:B.8、C【解析】求出圓心距的取值范圍,然后利用圓心距與半徑的和差關(guān)系判斷.【詳解】由兩圓的標(biāo)準(zhǔn)方程可得,,,;則,所以兩圓不可能內(nèi)含.故選:C.9、C【解析】求出斜率,根據(jù)斜率與傾斜角的關(guān)系,即可求解.【詳解】解:,即,直線的斜率為,即直線的傾斜角為120°.故選:C.10、B【解析】取中點(diǎn)為T,以及的外心為,的外心為,依據(jù)平面平面可知為正方形,然后計(jì)算外接球半徑,最后根據(jù)球表面積公式計(jì)算.【詳解】設(shè)中點(diǎn)為T,的外心為,的外心為,如圖由和均為邊長(zhǎng)為的正三角形則和的外接圓半徑為,又因?yàn)槠矫鍼BC平面ABC,所以平面,可知且,過(guò)分別作平面、平面的垂線相交于點(diǎn)即為三棱錐的外接球的球心,且四邊形是邊長(zhǎng)為的正方形,所以外接球半徑,則球的表面積為,故選:B11、A【解析】畫出圖形,建立空間直角坐標(biāo)系,用向量法求解即可【詳解】如圖,以為原點(diǎn)建立如圖所示的空間直角坐標(biāo)系,因?yàn)檎襟w棱長(zhǎng)為2,點(diǎn)是面的中心,是棱上一動(dòng)點(diǎn),所以,,,故選:A12、B【解析】將直線方程變?yōu)樾苯厥?,根?jù)斜率與傾斜角關(guān)系可直接求解.【詳解】由直線可得,所以,設(shè)傾斜角為,則因?yàn)樗怨蔬x:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】計(jì)算出正方體的8個(gè)頂點(diǎn)中選取4個(gè)作為項(xiàng)點(diǎn)的取法和分從上底面取一個(gè)點(diǎn)下底面取三個(gè)點(diǎn)、從上底面取二個(gè)點(diǎn)下底面取二個(gè)點(diǎn)、從上底面取三個(gè)點(diǎn)下底面取一個(gè)點(diǎn)可得到四面體的取法,由古典概型概率計(jì)算公式可得答案.【詳解】正方體的8個(gè)頂點(diǎn)中選取4個(gè)作為項(xiàng)點(diǎn),共有取法,可得到四面體的情況有從上底面取一個(gè)點(diǎn)下底面取三個(gè)點(diǎn)有種;從上底面取二個(gè)點(diǎn)下底面取二個(gè)點(diǎn)有種,其中當(dāng)上底面和下底面取的四個(gè)點(diǎn)在同一平面時(shí)共有10種情況不符合,此種情況共有種;從上底面取三個(gè)點(diǎn)下底面取一個(gè)點(diǎn)有種;一個(gè)有種,所以可得到四面體的概率為.故答案為:.14、【解析】解不等式,得到或,,根據(jù)必要不充分條件,得到是A的真子集,從而求出,得到m的最大值.【詳解】,解得:或,所以記或,;若“x2-2x-8>0”是“x<m”的必要不充分條件,則是A的真子集故,所以m最大值為故答案為:-215、2或10【解析】求出在處的導(dǎo)數(shù),得出切線方程,與聯(lián)立,利用可求.【詳解】令,,則,,可得曲線在點(diǎn)處的切線方程為.聯(lián)立,得,,解得或.故答案為:2或10.16、【解析】根據(jù)兩直線平行得到,解方程組即可求出結(jié)果.【詳解】由題意可知,解得,故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)直線l的普通方程,曲線C的直角坐標(biāo)方程(2)【解析】(1)直接利用轉(zhuǎn)換關(guān)系,在參數(shù)方程、極坐標(biāo)方程和直角坐標(biāo)方程之間進(jìn)行轉(zhuǎn)換;(2)利用一元二次方程根和系數(shù)關(guān)系式的應(yīng)用求出結(jié)果【小問(wèn)1詳解】解:直線的參數(shù)方程為為參數(shù)),轉(zhuǎn)換為直角坐標(biāo)方程,曲線的極坐標(biāo)方程為,根據(jù),轉(zhuǎn)換為直角坐標(biāo)方程為;小問(wèn)2詳解】直線轉(zhuǎn)換為參數(shù)方程為為參數(shù)),代入,得到,所以,,所以18、(1)(2)存在【解析】(1)利用“退作差”法求得的通項(xiàng)公式.(2)利用裂項(xiàng)求和法求得,由此求得.【小問(wèn)1詳解】依題意①,當(dāng)時(shí),.當(dāng)時(shí),②,①-②得,,時(shí),上式也符合.所以.【小問(wèn)2詳解】.所以.故存在實(shí)數(shù),使得對(duì)任意恒成立.19、(1)證明見(jiàn)解析;(2)存在,理由見(jiàn)解析.【解析】(1)為中點(diǎn),連接,由中位線、線面平行的性質(zhì)可得四邊形為平行四邊形,再根據(jù)線面平行的判定即可證結(jié)論;(2)取中點(diǎn)N,連接,,根據(jù)線面、面面平行的性質(zhì)定理和判斷定理即可判斷存在性【小問(wèn)1詳解】如下圖,若為中點(diǎn),連接,由E是PD的中點(diǎn),所以且,又BC//平面PAD,面,且面面,所以,且,所以四邊形為平行四邊形,故,而面,面,則面.小問(wèn)2詳解】取中點(diǎn)N,連接,,∵E,N分別為,的中點(diǎn),∴,∵平面,平面,∴平面,線段存在點(diǎn)N,使得平面,理由如下:由(1)知:平面,又,∴平面平面,又M是上的動(dòng)點(diǎn),平面,∴平面PAB,∴線段存在點(diǎn)N,使得MN∥平面20、(1);(2)4【解析】(1)根據(jù)奇函數(shù)的定義,代入化簡(jiǎn)得,進(jìn)而可得的值;(2)設(shè),可得,根據(jù)奇函數(shù)的性質(zhì)得,進(jìn)而可得結(jié)果.【詳解】解:(1)因?yàn)槭瞧婧瘮?shù),所以,即,整理得,又,所以(2)設(shè),因?yàn)?,所以因?yàn)槭瞧婧瘮?shù),所以所以【點(diǎn)睛】本題主要考查了已知函數(shù)的奇偶性求參數(shù)的值,根據(jù)函數(shù)的奇偶性求函數(shù)的值,屬于中檔題.21、(1)(2)【解析】(1):根據(jù)正弦定理由邊化角和三角正弦和公式即可求解;(2):根據(jù)余弦定理和均值不等式求得最大值,利用面積公式即可求解【小問(wèn)1詳解】由正弦定理及,得,∵,∵,∴【小問(wèn)2詳解】由余弦定理,∴,∴,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,∴的面積的最大值為22、(1);(2).【解析】(1)根據(jù)

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論