《信號與線性系統(tǒng)分析基礎(chǔ)》課件 劉秀環(huán) 1.1.1Fundamental concepts of signals-4.2.1Property 12-linearity -shift in the s-domain_第1頁
《信號與線性系統(tǒng)分析基礎(chǔ)》課件 劉秀環(huán) 1.1.1Fundamental concepts of signals-4.2.1Property 12-linearity -shift in the s-domain_第2頁
《信號與線性系統(tǒng)分析基礎(chǔ)》課件 劉秀環(huán) 1.1.1Fundamental concepts of signals-4.2.1Property 12-linearity -shift in the s-domain_第3頁
《信號與線性系統(tǒng)分析基礎(chǔ)》課件 劉秀環(huán) 1.1.1Fundamental concepts of signals-4.2.1Property 12-linearity -shift in the s-domain_第4頁
《信號與線性系統(tǒng)分析基礎(chǔ)》課件 劉秀環(huán) 1.1.1Fundamental concepts of signals-4.2.1Property 12-linearity -shift in the s-domain_第5頁
已閱讀5頁,還剩210頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

信號與系統(tǒng)SignalsandSystems吉林大學(xué)FundamentalConceptsofSignalsFundamentalConceptsofsignals1.Definition:AnalyticrepresentationAsignalisareal-valuedorscalar-valuedfunctionofthetimevariable.2.Description:GraphicalrepresentationFrequency-domainanalysisFundamentalConceptsofsignalsTime-domainrepresentationAnalyticrepresentationGraphicalrepresentationFrequency-domainrepresentationFundamentalConceptsofsignals3.Classification:DeterminatesignalRandomsignal(1)One-dimensionalsignalMulti-dimensionalsignal(2)PeriodicsignalAperiodicsignal(3)EnergysignalPowersignal(4)FundamentalConceptsofsignalsSampledsignalContinuous-timesignal(5)Discrete-timesignalAnaloguesignalPiecewise-continuoussignalDigitalsignalDecompositionmethodFundamentalConceptsofsignals4.Signalsprocessing:(1)DirectcurrentcomponentAlternatingcurrentcomponent(2)EvensignalOddsignalFundamentalConceptsofsignals(3)PulsesStepfunctions(4)RealcomponentImaginarycomponent(5)FundamentalConceptsofsignalsOrthogonalfunctions(6)SuchasIffunctionsandareintegrableontheinterval,andsatisfythenthetwofunctionsandaresaidtobeorthogonalontheinterval.信號與系統(tǒng)SignalsandSystems吉林大學(xué)FundamentalConceptsofSystemsFundamentalconceptsofsystems1.Definition:Asystemisaninterconnectionofcomponentswithterminalsoraccessportsthroughwhichmatter,energy,orinformationcanbeappliedorextracted.Asystemisamathematicalmodelforaphysicalprocessthatrelatestheinputtotheoutput.Fundamentalconceptsofsystems2.Blockdiagramrepresentation:ScalarmultiplierUnit-delayelementFundamentalconceptsofsystemsSummator/adder/subtracterIntegratorFundamentalconceptsofsystems3.Classification:(1)CausalsystemNoncausalsystem(2)Continuous-timesystemDiscrete-timesystem---Describedbyalgebraicequationsordifferentialequations.---Describedbydifferenceequations.Fundamentalconceptsofsystems(3)Time-varyingsystemTime-invariantsystem---Describedbydifferentialequationswithvariablecoefficients.---Describedbydifferentialequationswithconstantcoefficients.Fundamentalconceptsofsystems---Describedbyordinarydifferentialequations.---Describedbypartialdifferentialequations.Distributedparametersystem(5)Lumpedparametersystem(6)StablesystemUnstablesystem(Boundedinputboundedoutput,BIBO)(4)InstantaneoussystemDynamicsystem---Describedbyalgebraicequations.---Describedbydifferentialequations.Fundamentalconceptsofsystems(b)Superposition/Additivity(a)Homogeneity(c)Decomposition(8)LinearsystemNonlinearsystem(7)ReversiblesystemIrreversiblesystemInitialcondition信號與系統(tǒng)SignalsandSystems吉林大學(xué)DeterminationofSystemCharacteristicsDeterminationofsystemcharacteristics[Example]Determineifthesystemdescribedbyislinear,time-invariant,causalandstable.Linearornonlinear?(1)Time-invariantortime-varying?(2)Let?DeterminationofsystemcharacteristicsCausalornoncausal?(3)Stableorunstable?(4)Tobecontinued:Conclusion:Thesystemislinear,time-varying,noncausalandstable.信號與系統(tǒng)SignalsandSystems吉林大學(xué)ModelingandLinearDifferentialEquationsSystemmodeling1ModelingandlineardifferentialequationsFindtheoutputresponsetotheexcitation.Solving2ModelingandlineardifferentialequationsHomogeneoussolutions:Forannth-orderdifferentialequation:Thecharacteristicequation(orauxiliaryequation):ModelingandlineardifferentialequationsTheformsofhomogeneoussolutions--dependentonthecharacteristicrootsWithnsimple(ordistinct)roots:Witharepeatedrootλofmultiplicityrandn-rsimpleroots:Withconjugatecomplexroots:treatedassimplerootsModelingandlineardifferentialequationsParticularsolutions---determinedbytheinput----αisanoncharicteristicroot.----α

isasimpleroot.----α

isarepeatedrootofmultiplicityr.---Zeroisarepeatedrootofmultiplicityr.信號與系統(tǒng)SignalsandSystems吉林大學(xué)TheUnitImpulseandtheUnitStepFunctionTheunitimpulseandtheunitstepfunctionSingularityfunctionsⅠContinuous-timesignalsthatarenotcontinuousatallpointscan’tbedifferentiableatallpoints,buttheymayhaveaderivativeinthegeneralizedsense.AFunctionitselforitsfirstderivative(oritsintegral)hasseveraldiscontinuities.TheunitimpulseandtheunitstepfunctionTwotypicalsingularfunctionsⅡ1.TheintroductionofandTheunitimpulseandtheunitstepfunctionTheunitimpulseandtheunitstepfunction2.Definitions:Theunitimpulseandtheunitstepfunction3.TherelationshipbetweenandThesignalmustbediscontinuousatifitsfirstderivativeinvolves.信號與系統(tǒng)SignalsandSystems吉林大學(xué)ThePropertiesoftheUnitImpulse(I)Thepropertiesoftheunitimpulse(I)Propertyoftranslation1Samplingproperty2Thepropertiesoftheunitimpulse(I)Time-scaling3Proof:Supposethatisanarbitrarytrialfunction.Thepropertiesoftheunitimpulse(I)Multipliedbyanordinaryfunction4Parity5Thepropertiesoftheunitimpulse(I)Thegeneralizedderivatives6Proof:信號與系統(tǒng)SignalsandSystems吉林大學(xué)TheUnitImpulseResponse(I)Theunitimpulseresponse(I)DefinitionITheimpulseresponseofacausallineartime-invariantcontinuous-timesystemistheoutputresponsewhentheinputistheunitimpulsewithnoinitialenergyinthesystemattime[priortotheapplicationof].Theunitimpulseresponse(I)Discussion:IIWeareinterestedinthemathematicalformof.Theformoftheunitimpulseresponseisdeterminedbythesystemequation,independentoftheapplicationandtheinitialenergy.Theunitimpulseresponse(I)HowtofindⅢTofindviatheunitstepresponseMethod1信號與系統(tǒng)SignalsandSystems吉林大學(xué)TheUnitImpulseResponse(II)Theunitimpulseresponse(II)ImpulseequilibriumformulationMethod2[Example]Findofthesystemdeterminedbythedifferentialequationwithconstantcoefficients,referencedbelow.Analysis:Thestatevariablesjump.Theunitimpulseresponse(II)Theunitimpulseresponse(II)Forannth-ordersystem,referencedbelow,

Ifisoneofthesimpleroots,theformofwillbe:信號與系統(tǒng)SignalsandSystems吉林大學(xué)TheUnitStepResponseTheunitstepresponseDefinition1Thestepresponseofacausallineartime-invariantcontinuous-timesystemisthezero-stateresponsetotheunitstepfunction.Howtofind2Method1TosolvethesystemequationMethod2TofindviaTheunitstepresponseMethod3Comparisonmethod(equilibriumformulation)Decomposition:Theunitstepresponse信號與系統(tǒng)SignalsandSystems吉林大學(xué)ConvolutionIntegralConvolutionintegral

ToexpressintermsofthesumofinfiniteimpulsesConvolutionintegral信號與系統(tǒng)SignalsandSystems吉林大學(xué)TheZero-StateResponsetotheExcitationThezero-stateresponsetotheexcitationLimitsofintegration:ForasignalofForacausalsystemForsignalsandThezero-stateresponsetotheexcitation信號與系統(tǒng)SignalsandSystems吉林大學(xué)TheCommonOperationsofContinuous-TimeSignalsThecommonoperationsofcontinuous-timesignalsAddition1Thecommonoperationsofcontinuous-timesignalsMultiplication2Thecommonoperationsofcontinuous-timesignalsDifferentiation3Thecommonoperationsofcontinuous-timesignalsShift4Time-scaling5Folding6[Example]Thecommonoperationsofcontinuous-timesignalsTheprofileofisgivenbelow,plotasthefunctionoft.信號與系統(tǒng)SignalsandSystems吉林大學(xué)GraphicalRepresentationofConvolutionGraphicalRepresentationofConvolutionGraphicalRepresentationofConvolution信號與系統(tǒng)SignalsandSystems吉林大學(xué)PropertiesofConvolutionPropertiesofconvolutionProof:1.CommutativityPropertiesofconvolution2.DistributivitywithadditionPropertiesofconvolution3.Associativity4.DifferentiationandintegrationDifferentiation(1)PropertiesofconvolutionProof:Integration(2)PropertiesofconvolutionCombinationofdifferentiationandintegration(3)ItisrequiredthatDuhamel’sIntegralPropertiesofconvolution5.Shiftintime6.Replication(Convolutionwiththeunitimpulse)Proof:信號與系統(tǒng)SignalsandSystems吉林大學(xué)IntroductionandtheBasicRepresentationofFourierSeriesTheBackgroundofFourierseriesFourierseries(F.S.forshort)isnamedaftertheFrenchmathematicianandphysicistJeanBaptistFourier(1768-1830),whowasthefirstonetoproposethatperiodicwaveformscouldberepresentedbyasumofsinusoids(orcomplexexponentials)inthepaperonheatconductionwhichwaspresentedtoParisAcademyofScience.Fourierwasalsoveryactiveinthepoliticsofhistime.Forexample,heplayedanimportantroleinNapoleon’sexpeditionstoEgyptduringthelate1790s.TheFourierseriesofperiodicsignals--trigonometricseriesTheF.S.intermsoftrigonometricseriesTheFourierseriesofperiodicsignals--harmonicsTheFourierseriesofperiodicsignals--harmonicsTheF.S.intermsofharmonics信號與系統(tǒng)SignalsandSystems吉林大學(xué)ContributionofSymmetryoftotheFourierSeriesContributionofsymmetryoftotheF.S.(1)ContributionofsymmetryoftotheF.S.(2)ContributionofsymmetryoftotheF.S.(3)ContributionofsymmetryoftotheF.S.(4)(5)[Example]ContributionofsymmetryoftotheF.S.信號與系統(tǒng)SignalsandSystems吉林大學(xué)TheFourierSeriesintermsofPeriodicComplexExponentialsTheF.S.intermsofperiodiccomplexexponentialsTheFourierseriesofperiodicsignals--periodiccomplexexponentialsTheF.S.intermsofperiodiccomplexexponentialsTheFourierseriesofperiodicsignals--periodiccomplexexponentials信號與系統(tǒng)SignalsandSystems吉林大學(xué)FrequencySpectraofPeriodicSignalsFrequencyspectraofperiodicsignalsDefinition--Graphsthatfrequencycomponentsforaredisplayedbyverticallines.Description1Howtoplotfrequencyspectra2FrequencyspectraofperiodicsignalsUnilateralspectraBilateralspectraFrequencyspectraofperiodicsignalsExercise:信號與系統(tǒng)SignalsandSystems吉林大學(xué)TheFourierSeriesofaRectangularPulseTrainTheFourierseriesofarectangularpulsetrain1TheFourierseriesofarectangularpulsetrain2TheFourierseriesofarectangularpulsetrain2信號與系統(tǒng)SignalsandSystems吉林大學(xué)FourierTransformandInverseFourierTransformFouriertransformofanaperiodicsignalISpectraldensityfunctionFouriertransformofanaperiodicsignalⅡFouriertransformandinverseFouriertransformFouriertransformofanaperiodicsignal信號與系統(tǒng)SignalsandSystems吉林大學(xué)CommonFourierTransformPairs(1)CommonFouriertransformpairs12CommonFouriertransformpairs3CommonFouriertransformpairs4CommonFouriertransformpairs5CommonFouriertransformpairs6信號與系統(tǒng)SignalsandSystems吉林大學(xué)PropertiesofFourierTransformProperty1:LinearityProperty1:LinearityProof:[Example]Property1:Linearity信號與系統(tǒng)SignalsandSystems吉林大學(xué)PropertiesofFourierTransformProperty2:DualityProperty2:DualityProof:[Example]Property2:Duality信號與系統(tǒng)SignalsandSystems吉林大學(xué)PropertiesofFourierTransformProperty3:MultiplicationbyacomplexexponentialProof:Property3:MultiplicationbyacomplexexponentialMultiplicationbyacomplexexponential(shiftinfrequency)Property3:Multiplicationbyacomplexexponential(1)Inferences:ModulationtheoremModulatingsignalCarriersignalModulatedsignalProperty3:MultiplicationbyacomplexexponentialProperty3:Multiplicationbyacomplexexponential信號與系統(tǒng)SignalsandSystems吉林大學(xué)PropertiesofFourierTransformProperty4:ShiftintimeProperty5:TimescalingProperty4:ShiftintimeProof:Property5:TimescalingProof:信號與系統(tǒng)SignalsandSystems吉林大學(xué)PropertiesofFourierTransformProperty6:ConjugationandConjugateSymmetryProperty6:ConjugationandConjugateSymmetry(1)Property6:ConjugationandConjugateSymmetry(1)Property6:ConjugationandConjugateSymmetry(2)Property6:ConjugationandConjugateSymmetry(2)Property6:ConjugationandConjugateSymmetry(3)信號與系統(tǒng)SignalsandSystems吉林大學(xué)PropertiesofFourierTransformProperty7&8:ConvolutionTheoremsProperty7:Convolutioninthet-domainProof:Property8:Multiplicationinthet-domainMultiplicationinthet-domain(Convolutionintheω-domain)Proof:信號與系統(tǒng)SignalsandSystems吉林大學(xué)PropertiesofFourierTransformProperty9:Differentiationinthetime-domainProperty9:Differentiationinthetime-domainProof:(Suitabletotime-limitedsignals)信號與系統(tǒng)SignalsandSystems吉林大學(xué)PropertiesofFourierTransformProperty10:Integrationinthet-domainProperty10:Integrationinthet-domainProof:Property10:Integrationinthet-domainProperty10:Integrationinthet-domainProof:信號與系統(tǒng)SignalsandSystems吉林大學(xué)PropertiesofFourierTransformProperty11&12:DifferentiationandIntegrationintheω-DomainProperty11:Differentiationintheω-domainProof:Example:Property11:Differentiationintheω-domainProperty12:Integrationintheω-domain信號與系統(tǒng)SignalsandSystems吉林大學(xué)TheFourierTransformofaPeriodicSignalTheFouriertransformofaperiodicsignalⅠF.T.ofanon-sinusoidalperiodicsignalⅡTherelationshipbetweenandExample:TheFouriertransformofaperiodicsignal信號與系統(tǒng)SignalsandSystems吉林大學(xué)Steady-StateResponsetoNon-SinusoidalPeriodicSignalsSteady-stateresponsetonon-sinusoidalperiodicsignalsExample:信號與系統(tǒng)SignalsandSystems吉林大學(xué)FrequencyResponseFunction(SystemFunction)Frequencyresponsefunction(systemfunction)1.DefinitionFrequencyresponsefunction(systemfunction)Example:Findthesystemfunctionofthecircuitgivenbelow.信號與系統(tǒng)SignalsandSystems吉林大學(xué)ResponsetoAperiodicSignalsResponsetoaperiodicsignalsExample:Responsetoaperiodicsignals信號與系統(tǒng)SignalsandSystems吉林大學(xué)AnalysisofDistortionlessSystemsAnalysisofdistortionlesssystemsⅠDistortionlesssystemAnalysisofdistortionlesssystemsⅡThenecessaryandsufficientconditionofdistortionlesstransmission信號與系統(tǒng)SignalsandSystems吉林大學(xué)AnalysisofIdealLowpassFilters(ILFs)Analysisofideallowpassfilters(ILFs)ⅠThecharacteristicofILFsⅡTheimpulseresponseofILFAnalysisofideallowpassfilters(ILFs)ⅢTheapproximatelydistortionlessconditionofILFsAnalysisofideallowpassfilters(ILFs)ⅣPhysicalrealizabilityofasystemAnalysisofideallowpassfilters(ILFs)——Paley-WienercriterionIntime-domainInfrequency-domain信號與系統(tǒng)SignalsandSystems吉林大學(xué)SamplingandtheFourierTransforms(FTs)ofSampledContinuous-TimeSignalsSamplingandtheFouriertransformofⅠSamplingprocessAsamplingprocessisto“extract”aseriesofdiscretesamplevaluesfromacontinuous-timesignalbyusingasamplingimpulse(orpulse)train.ⅡClassification

Impulse-trainsampling(idealizedsampling)

Rectangularpulse-trainsamplingSamplingandtheFouriertransformofImpulse-trainsampling(idealizedsampling)ⅢTheFTsofsampledcontinuous-ti

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論