版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
云南省鹽津縣第三中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末綜合測試試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)。回答非選擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.下列命題中正確的是()A.若為真命題,則為真命題B.在中“”是“”的充分必要條件C.命題“若,則或”的逆否命題是“若或,則”D.命題,使得,則,使得2.已知向量,則“”是“”的()A充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件3.已知命題:,命題:,則是的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件4.已知隨機(jī)變量服從正態(tài)分布,且,則()A.0.6 B.0.4C.0.3 D.0.25.在等差數(shù)列中,為其前項(xiàng)和,若.則()A. B.C. D.6.早在古希臘時(shí)期,亞歷山大的科學(xué)家赫倫就發(fā)現(xiàn):光從一點(diǎn)直接傳播到另一點(diǎn)選擇最短路徑,即這兩點(diǎn)間的線段.若光從一點(diǎn)不是直接傳播到另一點(diǎn),而是經(jīng)由一面鏡子(即便鏡面是曲面)反射到另一點(diǎn),仍然選擇最短路徑.已知曲線,且將假設(shè)為能起完全反射作用的曲面鏡,若光從點(diǎn)射出,經(jīng)由上一點(diǎn)反射到點(diǎn),則()A. B.C. D.7.用數(shù)學(xué)歸納法證明“”時(shí),由假設(shè)證明時(shí),不等式左邊需增加的項(xiàng)數(shù)為()A. B.C. D.8.設(shè),,,則下列不等式中一定成立的是()A. B.C. D.9.在空間直角坐標(biāo)系中,已知,,則MN的中點(diǎn)P到坐標(biāo)原點(diǎn)О的距離為()A. B.C.2 D.310.公比為的等比數(shù)列,其前項(xiàng)和為,前項(xiàng)積為,滿足,.則下列結(jié)論正確的是()A.的最大值為B.C.最大值為D.11.在正方體的12條棱中任選3條,其中任意2條所在的直線都是異面直線的概率為()A. B.C. D.12.?dāng)?shù)學(xué)中的數(shù)形結(jié)合也可以組成世間萬物的絢麗畫面,-些優(yōu)美的曲線是數(shù)學(xué)形象美、對稱美、和諧美的產(chǎn)物.曲線C:為四葉玫瑰線.①方程(xy<0)表示的曲線在第二和第四象限;②曲線C上任一點(diǎn)到坐標(biāo)原點(diǎn)0的距離都不超過2;③曲線C構(gòu)成的四葉玫瑰線面積大于4π;④曲線C上有5個(gè)整點(diǎn)(橫、縱坐標(biāo)均為整數(shù)的點(diǎn)).則上述結(jié)論中正確的個(gè)數(shù)是()A.1 B.2C.3 D.4二、填空題:本題共4小題,每小題5分,共20分。13.已知向量,,,若,則____________.14.在空間直角坐標(biāo)系中,已知點(diǎn)A,若點(diǎn)P滿足,則_______15.等差數(shù)列中,若,,則______,數(shù)列的前n項(xiàng)和為,則______16.已知是橢圓的左、右焦點(diǎn),在橢圓上運(yùn)動(dòng),當(dāng)?shù)闹底钚r(shí),的面積為_______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖1是直角梯形,以為折痕將折起,使點(diǎn)C到達(dá)的位置,且平面與平面垂直,如圖2(1)求異面直線與所成角的余弦值;(2)在棱上是否存在點(diǎn)P,使平面與平面的夾角為?若存在,則求三棱錐的體積,若不存在,則說明理由18.(12分)寫出下列命題的逆命題、否命題以及逆否命題:(1)若,則;(2)已知為實(shí)數(shù),若,則19.(12分)某市共有居民60萬人,為了制定合理的節(jié)水方案,對居民用水情況進(jìn)行了調(diào)查,通過抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照,,……分成9組,制成了如圖所示的頻率分布直方圖(1)求直方圖中的a值,并估計(jì)該市居民月均用水量不少于3噸的人數(shù)(單位:人);(2)估計(jì)該市居民月均用水量的眾數(shù)和中位數(shù)20.(12分)已知直線與雙曲線交于,兩點(diǎn),為坐標(biāo)原點(diǎn)(1)當(dāng)時(shí),求線段的長;(2)若以為直徑的圓經(jīng)過坐標(biāo)原點(diǎn),求的值21.(12分)已知函數(shù),且(1)求曲線在點(diǎn)處的切線方程;(2)求函數(shù)在區(qū)間上的最小值22.(10分)已知橢圓的左焦點(diǎn)為,點(diǎn)到短袖的一個(gè)端點(diǎn)的距離為.(1)求橢圓的方程;(2)過點(diǎn)作斜率為的直線,與橢圓交于,兩點(diǎn),若,求的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】A選項(xiàng),當(dāng)一真一假時(shí)也滿足條件,但不滿足為真命題;B選項(xiàng),可以使用正弦定理和大邊對大角,大角對大邊進(jìn)行證明;C選項(xiàng),利用逆否命題的定義進(jìn)行判斷,D選項(xiàng),特稱命題的否定,把存在改為任意,把結(jié)論否定,故可判斷D選項(xiàng).【詳解】若為真命題,則可能均為真,或一真一假,則可能為真命題,也可能為假命題,故A錯(cuò)誤;在中,由正弦定理得:,若,則,從而,同理,若,則由正弦定理得,,所以,故在中“”是“”的充分必要條件,B正確;命題“若,則或”的逆否命題是“若且,則”,故C錯(cuò)誤;命題,使得,則,使得,故D錯(cuò)誤.故選:B2、A【解析】根據(jù)得出,根據(jù)充分必要條件的定義可判斷.【詳解】解:∵,向量,,∴,即,根據(jù)充分必要條件的定義可判斷:“”是“”的充分不必要條件,故選:A.3、B【解析】利用充分條件和必要條件的定義判斷.【詳解】因?yàn)槊}:或,命題:,所以是的必要不充分條件,故選:B4、A【解析】根據(jù)正態(tài)曲線的對稱性即可求得答案.【詳解】由題意,正態(tài)曲線的對稱軸為,則與關(guān)于對稱軸對稱,于是.故選:A.5、C【解析】利用等差數(shù)列的性質(zhì)和求和公式可求得的值.【詳解】由等差數(shù)列的性質(zhì)和求和公式可得.故選:C.6、B【解析】記橢圓的右焦點(diǎn)為,根據(jù)橢圓定義,得到,由題中條件,確定本題的本質(zhì)即是求的最小值,結(jié)合題中數(shù)據(jù),即可求出結(jié)果.【詳解】記橢圓的右焦點(diǎn)為,根據(jù)橢圓的定義可得,,所以,因?yàn)?,?dāng)且僅當(dāng)三點(diǎn)共線時(shí),,即;由題意可得,求的值,即是求最短路徑,即求的最小值,所以的最小值為,因此.故選:B.【點(diǎn)睛】思路點(diǎn)睛:求解橢圓上動(dòng)點(diǎn)到一焦點(diǎn)和一定點(diǎn)距離和的最小值或差的最大值時(shí),一般需要利用橢圓的定義,將問題轉(zhuǎn)化為動(dòng)點(diǎn)與另一焦點(diǎn)以及該定點(diǎn)距離和的最值問題來求解即可.7、C【解析】當(dāng)成立,寫出左側(cè)的表達(dá)式,當(dāng)時(shí),寫出對應(yīng)的關(guān)系式,觀察計(jì)算即可【詳解】從到成立時(shí),左邊增加的項(xiàng)為,因此增加的項(xiàng)數(shù)是,故選:C8、B【解析】利用特殊值法可判斷ACD的正誤,根據(jù)不等式的性質(zhì),可判斷B的正誤.【詳解】對于A中,令,,,,滿足,,但,故A錯(cuò)誤;對于B中,因?yàn)?,所以由不等式的可加性,可得,所以,故B正確;對于C中,令,,,,滿足,,但,故C錯(cuò)誤;對于D中,令,,,,滿足,,但,故D錯(cuò)誤故選:B9、A【解析】利用中點(diǎn)坐標(biāo)公式及空間中兩點(diǎn)之間的距離公式可得解.【詳解】,,由中點(diǎn)坐標(biāo)公式,得,所以.故選:A10、A【解析】根據(jù)已知條件,判斷出,即可判斷選項(xiàng)D,再根據(jù)等比數(shù)列的性質(zhì),判斷,,由此判斷出選項(xiàng)A,B,C.【詳解】根據(jù)題意,等比數(shù)列滿足條件,,,若,則,則,,則,這與已知條件矛盾,所以不符合題意,故選項(xiàng)D錯(cuò)誤;因?yàn)椋?,,所以,,,則,,數(shù)列前2021項(xiàng)都大于1,從第2022項(xiàng)開始都小于1,因此是數(shù)列中的最大值,故選項(xiàng)A正確由等比數(shù)列的性質(zhì),,故選項(xiàng)B不正確;而,由以上分析可知其無最大值,故C錯(cuò)誤;故選:A11、B【解析】根據(jù)正方體的性質(zhì)確定3條棱兩兩互為異面直線的情況數(shù),結(jié)合組合數(shù)及古典概率的求法,求任選3條其中任意2條所在的直線是異面直線的概率.【詳解】如下圖,正方體中如:中任意2條所在的直線都是異面直線,∴這樣的3條直線共有8種情況,∴任選3條,其中任意2條所在的直線都是異面直線的概率為.故選:B.12、B【解析】對于①,由判斷,對于②,利用基本不等式可判斷,對于③,以為圓心,2為半徑的圓的面積與曲線圍成的面積進(jìn)行比較即可,對于④,將和聯(lián)立,求解出兩曲線的切點(diǎn),從而可判斷【詳解】對于①,由,得異號(hào),方程(xy<0)關(guān)于原點(diǎn)及y=x對稱,所以方程(xy<0)表示的曲線在第二和第四象限,所以①正確,對于②,因?yàn)?,所以,所以,所以,所以由曲線的對稱性可知曲線C上任一點(diǎn)到坐標(biāo)原點(diǎn)0的距離都不超過2,所以②正確,對于③,由②可知曲線C上到原點(diǎn)的距離不超過2,而以為圓心,2為半徑的圓的面積為,所以曲線C構(gòu)成的四葉玫瑰線面積小于4π,所以③錯(cuò)誤,對于④,將和聯(lián)立,解得,所以可得圓與曲線C相切于點(diǎn),,,,而點(diǎn)(1,1)不滿足曲線方程,所以曲線在第一象限不經(jīng)過任何整數(shù)點(diǎn),由曲線的對稱性可知曲線在其它象限也不經(jīng)過任何整數(shù)點(diǎn),所以曲線C上只有1個(gè)整點(diǎn)(0,0),所以④錯(cuò)誤,故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】首先求出的坐標(biāo),再根據(jù)向量垂直得到,即可得到方程,解得即可;【詳解】解:因?yàn)橄蛄?,,,所以向量,因?yàn)?,所以,即,解得故答案為?4、【解析】設(shè),表示出,,根據(jù)即可得到方程組,解得、、,即可求出的坐標(biāo),即可得到的坐標(biāo),最后根據(jù)向量模的坐標(biāo)表示計(jì)算可得;【詳解】解:設(shè),所以,,因?yàn)?,所以,所以,解得,即,所以,所以;故答案為?5、①.②.【解析】設(shè)等差數(shù)列公差為d,根據(jù)等差數(shù)列的性質(zhì)即可求通項(xiàng)公式;,采用裂項(xiàng)相消的方法求.【詳解】設(shè)等差數(shù)列公差為d,,,;∵,∴.故答案為:;.16、【解析】根據(jù)橢圓定義得出,進(jìn)而對進(jìn)行化簡,結(jié)合基本不等式得出的最小值,并求出的值,進(jìn)而求出面積.【詳解】由橢圓定義可知,,所以,,當(dāng)且僅當(dāng),即時(shí)取“=”.又,所以.所以,由勾股定理可知:,所以.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)存在,靠近點(diǎn)D的三等分點(diǎn).【解析】(1)由題意建立空間直接坐標(biāo)系,求得的坐標(biāo),由求解;(2)假設(shè)棱上存在點(diǎn)P,設(shè),求得點(diǎn)p坐標(biāo),再求得平面PBE的一個(gè)法向量,由平面,得到為平面的一個(gè)法向量,然后由求解.【小問1詳解】解:因?yàn)?,所以四邊形ABCE是平行四邊形,又,所以四邊形ABCE是菱形,,又平面與平面垂直,又平面與平面=EB,所以平面,建立如圖所示空間直接坐標(biāo)系:則,所以,則,所以異面直線與所成角的余弦值是;【小問2詳解】假設(shè)棱上存在點(diǎn)P,使平面與平面的夾角為,設(shè),則,又,設(shè)平面PBE的一個(gè)法向量為,則,即,則,由平面,則為平面的一個(gè)法向量,所以,解得.18、(1)答案見解析(2)答案見解析【解析】(1)(2)根據(jù)逆命題、否命題以及逆否命題的定義作答即可;【小問1詳解】解:逆命題:若,則;否命題:若,則;逆否命題:若,則【小問2詳解】解:逆命題:已知為實(shí)數(shù),若,則;否命題:已知為實(shí)數(shù),若或,則;逆否命題:已知實(shí)數(shù),若,則或19、(1)a0.3,72000人;(2)眾數(shù)2.25;中位數(shù)2.04.【解析】(1)根據(jù)所有小長方形面積和為1即可求得參數(shù),結(jié)合題意求得用水量不少于3噸對應(yīng)的頻率,再求頻數(shù)即可;(2)根據(jù)頻率分布直方圖直接寫出眾數(shù),根據(jù)中位數(shù)的求法,結(jié)合頻率的計(jì)算,即可容易求得結(jié)果.【小問1詳解】由頻率分布直方圖,可知:,解得;月均用水量不少于3噸的人數(shù)為:(人)【小問2詳解】由圖可估計(jì)眾數(shù)為2.25;設(shè)中位數(shù)為x噸,因?yàn)榍?組的頻率之和0.04+0.08+0.15+0.21+0.25=0.73>0.5,而前4組頻率之和0.04+0.08+0.15+0.21=0.48<0.5,所以2≤x<2.5,由,可得,故居民月均用水量的中位數(shù)為2.04噸.20、(1)(2)【解析】(1)聯(lián)立直線方程和雙曲線方程,利用弦長公式可求弦長.(2)根據(jù)圓過原點(diǎn)可得,設(shè),從而,聯(lián)立直線方程和雙曲線方程后利用韋達(dá)定理化簡前者可得所求的參數(shù)的值.【小問1詳解】當(dāng)時(shí),直線,設(shè),由可得,此時(shí),故.【小問2詳解】設(shè),因?yàn)橐詾橹睆降膱A經(jīng)過坐標(biāo)原點(diǎn),故,故,由可得,故且,故.而可化為即,因?yàn)?,所以,解得,結(jié)合其范圍可得.21、(1)(2)【解析】(1)由題意,求出的值,然后根據(jù)導(dǎo)數(shù)的幾何意義即可求解;(2)根據(jù)導(dǎo)數(shù)與函數(shù)單調(diào)性關(guān)系,判斷函數(shù)在區(qū)間上的單調(diào)性,從而即可求解.【小問1詳解】解:由題意,,因?yàn)椋?,解得,所以,,因?yàn)?,,所以曲線在點(diǎn)處的切線方程為,即;【小問2詳解】解:因?yàn)?,,所以時(shí),,時(shí),,所以在上單調(diào)遞減,在上單調(diào)遞增,所以,即函數(shù)在
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年定制櫥柜項(xiàng)目立項(xiàng)申請報(bào)告
- 2025年毛細(xì)管電泳儀項(xiàng)目提案報(bào)告
- 2024年精裝修修護(hù)工程協(xié)議樣本版B版
- 金色的魚鉤讀書心得模板10篇
- 安全生產(chǎn)演講稿范文10篇
- 做銷售的實(shí)習(xí)報(bào)告3篇
- 銷售提成方案模板匯編5篇
- 2024年五年級(jí)數(shù)學(xué)上冊 四 可能性 1簡單隨機(jī)現(xiàn)象和等可能性教學(xué)實(shí)錄 冀教版
- 活動(dòng)策劃書(15篇)
- 2024-2025學(xué)年新教材高中地理 第三章 大氣的運(yùn)動(dòng) 第二節(jié) 氣壓帶和風(fēng)帶教學(xué)實(shí)錄 新人教版選修1
- 難免壓力性損傷申報(bào)表
- 四線三格word模板
- 國家各部委專項(xiàng)資金申報(bào)種類
- 年會(huì)抽獎(jiǎng)券可編輯模板
- 靜電場知識(shí)點(diǎn)例題結(jié)合
- 中醫(yī)醫(yī)案學(xué)三醫(yī)案的類型讀案方法
- 制造業(yè)信息化管理系統(tǒng)架構(gòu)規(guī)劃
- 防雷裝置檢測質(zhì)量管理手冊
- 化學(xué)錨栓計(jì)算
- 燃?xì)忮仩t房和直燃機(jī)房防爆問題
- 測井曲線及代碼
評(píng)論
0/150
提交評(píng)論