吉林省聯(lián)誼校2025屆高二數(shù)學(xué)第一學(xué)期期末聯(lián)考試題含解析_第1頁
吉林省聯(lián)誼校2025屆高二數(shù)學(xué)第一學(xué)期期末聯(lián)考試題含解析_第2頁
吉林省聯(lián)誼校2025屆高二數(shù)學(xué)第一學(xué)期期末聯(lián)考試題含解析_第3頁
吉林省聯(lián)誼校2025屆高二數(shù)學(xué)第一學(xué)期期末聯(lián)考試題含解析_第4頁
吉林省聯(lián)誼校2025屆高二數(shù)學(xué)第一學(xué)期期末聯(lián)考試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

吉林省聯(lián)誼校2025屆高二數(shù)學(xué)第一學(xué)期期末聯(lián)考試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.下列數(shù)列是遞增數(shù)列的是()A. B.C. D.2.若雙曲線經(jīng)過點,且它的兩條漸近線方程是,則雙曲線的離心率是()A. B.C. D.103.已知直線是圓的對稱軸,過點A作圓C的一條切線,切點為B,則|AB|=()A.1 B.2C.4 D.84.已知,是雙曲線的左右焦點,過的直線與曲線的右支交于兩點,則的周長的最小值為()A. B.C. D.5.已知正方體的棱長為1,且滿足,則的最小值是()A. B.C. D.6.已知點,,,動點P滿足,則的取值范圍為()A. B.C. D.7.已知集合,則()A. B.C. D.8.若平面的一個法向量為,點,,,,到平面的距離為()A.1 B.2C.3 D.49.世界上最早在理論上計算出“十二平均律”的是我國明代杰出的律學(xué)家朱載堉,他當(dāng)時稱這種律制為“新法密率”十二平均律將一個純八度音程分成十二份,依次得到十三個單音,從第二個單音起,每一個單音的頻率與它前一個單音的頻率的比都相等,且最后一個單音是第一個單音頻率的2倍.已知第十個單音的頻率,則與第四個單音的頻率最接近的是()A.880 B.622C.311 D.22010.已知,則在方向上的投影為()A. B.C. D.11.如圖,過拋物線的焦點的直線交拋物線于點,,交其準線于點,準線與對稱軸交于點,若,且,則此拋物線的方程為()A. B.C. D.12.在正方體中,為棱的中點,為棱的中點,則直線與平面所成角的正弦值為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.橢圓的弦被點平分,則這條弦所在的直線方程是________14.已知等比數(shù)列的前n項和為,且滿足,則_____________15.已知,求_____________.16.已知曲線,則曲線在點處的切線方程為____________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)數(shù)列的前項和為,已知,且(1)證明:;(2)求18.(12分)已知函數(shù),(1)討論的單調(diào)性;(2)若時,對任意都有恒成立,求實數(shù)的最大值19.(12分)一個盒中裝有編號分別為、、、的四個形狀大小完全相同的小球.(1)從盒中任取兩球,列出所有的基本事件,并求取出的球的編號之和大于的概率;(2)從盒中任取一球,記下該球的編號,將球放回,再從盒中任取一球,記下該球的編號,列出所有的基本事件,并求的概率.20.(12分)已知拋物線上一點到其焦點F的距離為2.(1)求拋物線方程;(2)直線與拋物線相交于兩點,求的長.21.(12分)已知函數(shù).(1)討論的單調(diào)性;(2)當(dāng)時,求函數(shù)在內(nèi)的零點個數(shù).22.(10分)已知橢圓的焦點與雙曲線的焦點相同,且D的離心率為.(1)求C與D的方程;(2)若,直線與C交于A,B兩點,且直線PA,PB的斜率都存在.①求m的取值范圍.②試問這直線PA,PB的斜率之積是否為定值?若是,求出該定值;若不是,請說明理由.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】分別判斷的符號,從而可得出答案.【詳解】解:對于A,,則,所以數(shù)列為遞減數(shù)列,故A不符合題意;對于B,,則,所以數(shù)列為遞減數(shù)列,故B不符合題意;對于C,,則,所以數(shù)列為遞增數(shù)列,故C符合題意;對于D,,則,所以數(shù)列遞減數(shù)列,故D不符合題意.故選:C.2、A【解析】由已知設(shè)雙曲線方程為:,代入求得,計算即可得出離心率.【詳解】雙曲線經(jīng)過點,且它的兩條漸近線方程是,設(shè)雙曲線方程為:,代入得:,.所以雙曲線方程為:..雙曲線C的離心率為故選:A3、C【解析】首先將圓心坐標(biāo)代入直線方程求出參數(shù)a,求得點A的坐標(biāo),由切線與圓的位置關(guān)系構(gòu)造直角三角形從而求得.【詳解】圓即,圓心為,半徑為r=3,由題意可知過圓的圓心,則,解得,點A坐標(biāo)為,,切點為B則,故選:C【點睛】本題考查直線與圓的位置關(guān)系,屬于基礎(chǔ)題.4、C【解析】根據(jù)雙曲線的定義和性質(zhì),當(dāng)弦垂直于軸時,即可求出三角形的周長的最小值.【詳解】由雙曲線可知:的周長為.當(dāng)軸時,周長最小值為故選:C5、C【解析】由空間向量共面定理可得點四點共面,從而將求的最小值轉(zhuǎn)化為求點到平面的距離,再根據(jù)等體積法計算.【詳解】因為,由空間向量的共面定理可知,點四點共面,即點在平面上,所以的最小值為點到平面的距離,由正方體棱長為,可得是邊長為的等邊三角形,則,,由等體積法得,,所以,所以的最小值為.故選:C【點睛】共面定理的應(yīng)用:設(shè)是不共面的四點,則對空間任意一點,都存在唯一的有序?qū)崝?shù)組使得,說明:若,則四點共面.6、C【解析】由題設(shè)分析知的軌跡為(不與重合),要求的取值范圍,只需求出到圓上點的距離范圍即可.【詳解】由題設(shè),在以為直徑的圓上,令,則(不與重合),所以的取值范圍,即為到圓上點的距離范圍,又圓心到的距離,圓的半徑為2,所以的取值范圍為,即.故選:C7、C【解析】解一元二次不等式求集合A,再由集合的交運算求即可.【詳解】由題設(shè),,∴.故選:C.8、B【解析】求出,點A到平面的距離:,由此能求出結(jié)果【詳解】解:,,,,∴為平面的一條斜線,且∴點到平面的距離:故選:B.9、C【解析】依題意,每一個單音的頻率構(gòu)成一個等比數(shù)列,由,算出公比,結(jié)合,即可求出.【詳解】設(shè)第一個單音的頻率為,則最后一個單音的頻率為,由題意知,且每一個單音的頻率構(gòu)成一個等比數(shù)列,設(shè)公比為,則,解得:又,則與第四個單音的頻率最接近的是311,故選:C【點睛】關(guān)鍵點點睛:本題考查等比數(shù)列通項公式的運算,解題的關(guān)鍵是分析題意將其轉(zhuǎn)化為等比數(shù)列的知識,考查學(xué)生的計算能力,屬于基礎(chǔ)題.10、C【解析】利用向量數(shù)量積的幾何意義即得【詳解】,故在方向上的投影為:故選:C11、B【解析】根據(jù)拋物線定義,結(jié)合三角形相似以及已知條件,求得,則問題得解.【詳解】根據(jù)題意,過作垂直于準線,垂足為,過作垂直于準線,垂足為,如下所示:因為,又//,,則,故可得,又△△,則,即,解得,故拋物線方程為:.故選:.12、D【解析】建立空間直角坐標(biāo)系,計算平面的法向量,利用線面角的向量公式即得解【詳解】不妨設(shè)正方體的棱長為2,連接,以為坐標(biāo)原點如圖建立空間直角坐標(biāo)系,則,,,,,,由于平面,平面,故又正方形,故平面故平面,所以為平面的一個法向量,故直線與平面所成角正弦值為.故選:D二、填空題:本題共4小題,每小題5分,共20分。13、2x+4y-3=0【解析】設(shè)弦端點為,又A,B在橢圓上,、即直線AB的斜率為直線AB的方程為,.14、##31.5【解析】根據(jù)等比數(shù)列通項公式,求出,代入求和公式,即可得答案.【詳解】因為數(shù)列為等比數(shù)列,所以,又,所以,所以.故答案為:15、【解析】根據(jù)導(dǎo)數(shù)的定義即可求解.【詳解】,所以,故答案為:.16、【解析】求解導(dǎo)函數(shù),然后根據(jù)導(dǎo)數(shù)的幾何意義求出切線斜率,并計算,利用點斜式寫出切線方程.【詳解】,由題意,切線的斜率為,,所以曲線在點處的切線方程為,即.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2)【解析】(1)當(dāng)時,由題可得,,兩式子相減可得,即,然后驗證當(dāng)n=1時,命題成立即可;(2)通過求解數(shù)列的奇數(shù)項與偶數(shù)項的和即可得到其對應(yīng)前n項和的通項公式.【詳解】(1)由條件,對任意,有,因而對任意,有,兩式相減,得,即,又,所以,故對一切,(2)由(1)知,,所以,于是數(shù)列是首項,公比為3的等比數(shù)列,數(shù)列是首項,公比為3的等比數(shù)列,所以,于是從而,綜上所述,.【點睛】已知數(shù)列{an}的前n項和Sn,求數(shù)列的通項公式,其求解過程分為三步:(1)先利用a1=S1求出a1;(2)用n-1替換Sn中的n得到一個新的關(guān)系,利用an=Sn-Sn-1(n≥2)便可求出當(dāng)n≥2時an的表達式;(3)對n=1時的結(jié)果進行檢驗,看是否符合n≥2時an的表達式,如果符合,則可以把數(shù)列的通項公式合寫;如果不符合,則應(yīng)該分n=1與n≥2兩段來寫.?dāng)?shù)列求和的常用方法有倒序相加法,錯位相減法,裂項相消法,分組求和法,并項求和法等,可根據(jù)通項特點進行選用.18、(1)答案見解析;(2).【解析】(1)利用導(dǎo)數(shù)與單調(diào)性的關(guān)系分類討論即得;(2)由題可得在上恒成立,構(gòu)造函數(shù),利用導(dǎo)數(shù)求函數(shù)的最值即可.【小問1詳解】的定義域為,且當(dāng)時,顯然,在定義域上單調(diào)遞增;當(dāng)時,令,得則有:極大值即在上單調(diào)遞增,在上單調(diào)遞減,綜上所述,當(dāng)時,在定義域上單調(diào)遞增;當(dāng)時,在上單調(diào)遞增,在上單調(diào)遞減.【小問2詳解】當(dāng)時,,對于滿足恒成立,在上恒成立,令,只需∴,,,令,則,在上單調(diào)遞增,又,,存在唯一的,使得,即,兩邊取自然對數(shù)得,極小值,則的最大值為19、(1)基本事件答案見解析,概率為;(2)基本事件答案見解析,概率為.【解析】(1)利用列舉法列舉出所有的基本事件,并確定事件“取出的球的編號之和大于”所包含的基本事件數(shù),利用古典概型的概率公式可求得結(jié)果;(2)利用列舉法列舉出所有的基本事件,并確定事件“”所包含的基本事件數(shù),利用古典概型的概率公式可求得結(jié)果.【詳解】(1)記“從盒中任取兩球,取出球的編號之和大于”為事件,樣本點表示“從盒中取出、號球”,且和表示相同的樣本點(以此類推),則樣本空間為,則,根據(jù)古典概型可知,從盒中任取兩球,取出球的編號之和大于的概率為;(2)記“”為事件,樣本點表示第一次取出號球,將球放回,從盒中取出號球(以此類推),則樣本空間,則,所以,故事件“”的概率為.20、(1)(2)【解析】(1)根據(jù)拋物線焦半徑公式即可得解;(2)聯(lián)立方程組求出交點坐標(biāo),即可得到弦長.【小問1詳解】由題:拋物線上一點到其焦點F的距離為2,即,所以拋物線方程:【小問2詳解】聯(lián)立直線和得,解得,,21、(1)當(dāng),在單調(diào)遞增;當(dāng),在單調(diào)遞增,在單調(diào)遞減.(2)0.【解析】(1)求得,對參數(shù)分類討論,即可由每種情況下的正負確定函數(shù)的單調(diào)性;(2)根據(jù)題意求得,利用進行放縮,只需證即,再利用導(dǎo)數(shù)通過證明從而得到恒成立,則問題得解.【小問1詳解】以為,其定義域為,又,故當(dāng)時,,在單調(diào)遞增;當(dāng)時,令,可得,且令,解得,令,解得,故在單調(diào)遞增,在單調(diào)遞減.綜上所述:當(dāng),在單調(diào)遞增;當(dāng),在單調(diào)遞增,在單調(diào)遞減.【小問2詳解】因為,故可得,則,;下證恒成立,令,則,故在單調(diào)遞減,又當(dāng)時,,故在恒成立,即;因為,故,令,下證在恒成立,要證恒成立,即證,又,故即證,令,則,令,解得,此時該函數(shù)單調(diào)遞增,令,解得,此時該函數(shù)單調(diào)遞減,又當(dāng)時,,也即;令,則,令,解得,此時該函數(shù)單調(diào)遞減,令,解得,此時該函數(shù)單調(diào)遞增,又當(dāng)時,,也即;又,故恒成立,則在恒成立,又,故當(dāng)時,恒成立,則在上的零點個數(shù)是.【點睛】本題考察利用導(dǎo)數(shù)研究含參函數(shù)的單調(diào)性,以及函數(shù)零點問題的處理;本題第二問處理的關(guān)鍵是通過分離參數(shù)和構(gòu)造函數(shù),證明恒成立,屬綜合困難題.22、(1)C:;D:;(2)①且;②見解析.【解析】(1)根據(jù)D的離心率為,求出從而求出雙曲線的焦點,再由橢圓的焦點與雙曲線的焦點相同,即可求出,即可求出C與D的方程;(2)①根據(jù)題意容易

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論