版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025屆湖北省武漢市新洲一中陽(yáng)邏校區(qū)高二上數(shù)學(xué)期末學(xué)業(yè)水平測(cè)試模擬試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫(xiě)在答題紙相應(yīng)的答題區(qū)內(nèi)。寫(xiě)在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若x,y滿足約束條件,則的最大值為()A.2 B.3C.4 D.52.已知橢圓=1(a>b>0)的右焦點(diǎn)為F,橢圓上的A,B兩點(diǎn)關(guān)于原點(diǎn)對(duì)稱,|FA|=2|FB|,且·≤a2,則該橢圓離心率的取值范圍是()A.(0,] B.(0,]C.,1) D.,1)3.已知橢圓與雙曲線有共同的焦點(diǎn),則()A.14 B.9C.4 D.24.瑞士著名數(shù)學(xué)家歐拉在1765年提出定理:三角形的外心、重心、垂心位于同一直線上,這條直線被后人稱為三角形的“歐拉線”.若滿足,頂點(diǎn),且其“歐拉線”與圓相切,則:①.圓M上的點(diǎn)到原點(diǎn)的最大距離為②.圓M上存在三個(gè)點(diǎn)到直線的距離為③.若點(diǎn)在圓M上,則的最小值是④.若圓M與圓有公共點(diǎn),則上述結(jié)論中正確的有()個(gè)A.1 B.2C.3 D.45.已知直線l,m,平面α,β,,,則是的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件6.拋物線的焦點(diǎn)為F,A,B是拋物線上兩點(diǎn),若,若AB的中點(diǎn)到準(zhǔn)線的距離為3,則AF的中點(diǎn)到準(zhǔn)線的距離為()A.1 B.2C.3 D.47.不等式的解集為()A. B.C.或 D.或8.?dāng)?shù)學(xué)家歌拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一直線上,且重心到外心的距離是重心到垂心距離的一半.這條直線被后人稱為三角形的歐拉線.已知的三個(gè)頂點(diǎn)分別為,,,則的歐拉線方程是()A. B.C. D.9.函數(shù),的最小值為()A.2 B.3C. D.10.方程表示的圖形是A.兩個(gè)半圓 B.兩個(gè)圓C.圓 D.半圓11.已知向量,,則向量等于()A.(3,1,-2) B.(3,-1,2)C.(3,-1,-2) D.(-3,-1,-2)12.設(shè)拋物線C:的焦點(diǎn)為,準(zhǔn)線為.是拋物線C上異于的一點(diǎn),過(guò)作于,則線段的垂直平分線()A.經(jīng)過(guò)點(diǎn) B.經(jīng)過(guò)點(diǎn)C.平行于直線 D.垂直于直線二、填空題:本題共4小題,每小題5分,共20分。13.點(diǎn)到拋物線上的點(diǎn)的距離的最小值為_(kāi)_______.14.已知離心率為,且對(duì)稱軸都在坐標(biāo)軸上的雙曲線C過(guò)點(diǎn),過(guò)雙曲線C上任意一點(diǎn)P,向雙曲線C的兩條漸近線分別引垂線,垂足分別是A,B,點(diǎn)O為坐標(biāo)原點(diǎn),則四邊形OAPB的面積為_(kāi)_____15.直線與直線平行,則m的值是__________16.設(shè)拋物線的焦點(diǎn)為,直線過(guò)焦點(diǎn),且與拋物線交于兩點(diǎn),,則__________三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知命題實(shí)數(shù)滿足成立,命題方程表示焦點(diǎn)在軸上的橢圓,若命題為真,命題或?yàn)檎?,求?shí)數(shù)的取值范圍18.(12分)如圖,四棱錐中,是邊長(zhǎng)為2的正三角形,底面為菱形,且平面平面,,為上一點(diǎn),滿足.(1)證明:;(2)求二面角的余弦值.19.(12分)已知拋物線的焦點(diǎn)是橢圓的一個(gè)焦點(diǎn),直線交拋物線E于兩點(diǎn)(1)求E的方程;(2)若以BC為直徑的圓過(guò)原點(diǎn)O,求直線l的方程20.(12分)已知圓,直線過(guò)定點(diǎn).(1)若與圓相切,求的方程;(2)若與圓相交于兩點(diǎn),且,求此時(shí)直線的方程.21.(12分)在等差數(shù)列中,,.(1)求的通項(xiàng)公式;(2)求數(shù)列的前項(xiàng)和.22.(10分)已知數(shù)列與滿足(1)若,且,求數(shù)列的通項(xiàng)公式;(2)設(shè)的第k項(xiàng)是數(shù)列的最小項(xiàng),即恒成立.求證:的第k項(xiàng)是數(shù)列的最小項(xiàng);(3)設(shè).若存在最大值M與最小值m,且,試求實(shí)數(shù)的取值范圍
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】作出不等式組對(duì)應(yīng)的可行域,再利用數(shù)形結(jié)合分析求解.【詳解】解:作出不等式組對(duì)應(yīng)的可行域?yàn)槿鐖D所示的陰影部分區(qū)域,由得,它表示斜率為縱截距為的直線系,當(dāng)直線平移到點(diǎn)時(shí),縱截距最大,最大.聯(lián)立直線方程得得.所以.故選:C2、B【解析】如圖設(shè)橢圓的左焦點(diǎn)為E,根據(jù)題意和橢圓的定義可知,利用余弦定理求出,結(jié)合平面向量的數(shù)量積計(jì)算即可.【詳解】由題意知,如圖,設(shè)橢圓的左焦點(diǎn)為E,則,因?yàn)辄c(diǎn)A、B關(guān)于原點(diǎn)對(duì)稱,所以四邊形為平行四邊形,由,得,,在中,,所以,由,得,整理,得,又,所以.故選:B3、C【解析】根據(jù)給定條件結(jié)合橢圓、雙曲線方程的特點(diǎn)直接列式計(jì)算作答.【詳解】設(shè)橢圓半焦距為c,則,而橢圓與雙曲線有共同的焦點(diǎn),則在雙曲線中,,即有,解得,所以.故選:C4、A【解析】由題意求出的垂直平分線可得△的歐拉線,再由圓心到直線的距離求得,得到圓的方程,求出圓心到原點(diǎn)的距離,加上半徑判斷A;求出圓心到直線的距離判斷B;再由的幾何意義,即圓上的點(diǎn)與定點(diǎn)連線的斜率判斷C;由兩個(gè)圓有公共點(diǎn)可得圓心距與兩個(gè)半徑之間的關(guān)系,求得的取值范圍判斷D【詳解】由題意,△的歐拉線即的垂直平分線,,,的中點(diǎn)坐標(biāo)為,,則的垂直平分線方程為,即由“歐拉線”與圓相切,到直線的距離,,則圓的方程為:,圓心到原點(diǎn)的距離為,則圓上的點(diǎn)到原點(diǎn)的最大距離為,故①錯(cuò)誤;圓心到直線的距離為,圓上存在三個(gè)點(diǎn)到直線的距離為,故②正確;的幾何意義:圓上的點(diǎn)與定點(diǎn)連線的斜率,設(shè)過(guò)與圓相切的直線方程為,即,由,解得,的最小值是,故③錯(cuò)誤;的圓心坐標(biāo),半徑為,圓的的圓心坐標(biāo)為,半徑為,要使圓與圓有公共點(diǎn),則圓心距的范圍為,,,解得,故④錯(cuò)誤故選:A5、A【解析】由題意可知,已知,,則可以推出,反之不成立.【詳解】已知,,則可以推出,已知,,則不可以推出.故是的充分不必要條件.故選:A.6、C【解析】結(jié)合拋物線的定義求得,由此求得線段的中點(diǎn)到準(zhǔn)線的距離【詳解】拋物線方程為,則,由于中點(diǎn)到準(zhǔn)線的距離為3,結(jié)合拋物線的定義可知,即,所以線段的中點(diǎn)到準(zhǔn)線的距離為.故選:C7、A【解析】先將分式不等式轉(zhuǎn)化為一元二次不等式,然后求解即可【詳解】由,得,解得,所以原不等式的解集為,故選:A8、B【解析】根據(jù)的三個(gè)頂點(diǎn)坐標(biāo),先求解出重心的坐標(biāo),然后再根據(jù)三個(gè)點(diǎn)坐標(biāo)求解任意兩條垂直平分線的方程,聯(lián)立方程,即可算出外心的坐標(biāo),最后根據(jù)重心和外心的坐標(biāo)使用點(diǎn)斜式寫(xiě)出直線方程.【詳解】由題意可得的重心為.因?yàn)?,,所以線段的垂直平分線的方程為.因?yàn)?,,所以直線的斜率,線段的中點(diǎn)坐標(biāo)為,則線段的垂直平分線的方程為.聯(lián)立,解得,則的外心坐標(biāo)為,故的歐拉線方程是,即故選:B.9、B【解析】求導(dǎo)函數(shù),分析單調(diào)性即可求解最小值【詳解】由,得,當(dāng)時(shí),,單調(diào)遞減;當(dāng)時(shí),,單調(diào)遞增∴當(dāng)時(shí),取得最小值,且最小值為故選:B.10、D【解析】其中,再兩邊同時(shí)平方,由此確定圖形【詳解】根據(jù)題意,,再兩邊同時(shí)平方,由此確定圖形為半圓.故選:D【點(diǎn)睛】幾何圖像中要注意與方程式是一一對(duì)應(yīng),故方程的中未知數(shù)的的取值范圍對(duì)應(yīng)到圖形中的坐標(biāo)的取值范圍11、B【解析】根據(jù)空間向量線性運(yùn)算的坐標(biāo)表示即可得出答案.【詳解】解:因?yàn)?,,所?故選:B.12、A【解析】依據(jù)題意作出焦點(diǎn)在軸上的開(kāi)口向右的拋物線,根據(jù)垂直平分線的定義和拋物線的定義可知,線段的垂直平分線經(jīng)過(guò)點(diǎn),即可求解.【詳解】如圖所示:因?yàn)榫€段的垂直平分線上的點(diǎn)到的距離相等,又點(diǎn)在拋物線上,根據(jù)定義可知,,所以線段的垂直平分線經(jīng)過(guò)點(diǎn).故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】設(shè)出拋物線上點(diǎn)的坐標(biāo),利用兩點(diǎn)間距離公式,配方求出最小值.【詳解】設(shè)拋物線上的點(diǎn)坐標(biāo),則,當(dāng)時(shí),取得最小值,且最小值為.故答案為:14、2【解析】由離心率為,∴雙曲線為等軸雙曲線,設(shè)雙曲線方程為,可得雙曲線方程為,設(shè),則到兩漸近線的距離為,,從而可求四邊形的面積【詳解】由離心率為,∴雙曲線為等軸雙曲線,設(shè)雙曲線方程為,又雙曲線過(guò)點(diǎn),,∴,故雙曲線方程為,∴漸近線方程為,設(shè),則到兩漸近線的距離為,,且,∵漸近線方程為,∴四邊形為矩形,∴四邊形的面積為故答案為:215、【解析】利用直線的平行條件即得.詳解】∵直線與直線平行,∴,∴.故答案為:.16、【解析】拋物線焦點(diǎn)為,由于直線和拋物線有兩個(gè)交點(diǎn),故直線斜率存在.根據(jù)拋物線的定義可知,故的縱坐標(biāo)為,橫坐標(biāo)為.不妨設(shè),故直線的方程為,聯(lián)立直線方程和拋物線方程,化簡(jiǎn)得,解得,故.所以.【點(diǎn)睛】本小題主要考查直線和拋物線的位置關(guān)系,考查拋物線的幾何性質(zhì)和定義.考查三角形面積公式.在解題過(guò)程中,先根據(jù)題目所給拋物線的方程求得焦點(diǎn)的坐標(biāo),然后利用拋物線的定義:到定點(diǎn)的距離等于到定直線的距離,由此求得點(diǎn)的坐標(biāo),進(jìn)而求得直線的方程,聯(lián)立直線方程和拋物線方程求得點(diǎn)的坐標(biāo).最后求得面積比.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、或【解析】首先根據(jù)復(fù)數(shù)的乘方及復(fù)數(shù)模的計(jì)算公式求出命題為真時(shí)參數(shù)的取值范圍,再根據(jù)橢圓的性質(zhì)求出命題為真時(shí)參數(shù)的取值范圍,依題意為假,為真,即可求出參數(shù)的取值范圍;【詳解】解:因?yàn)?,,,,所以,所以,所以為真時(shí),因?yàn)榉匠瘫硎窘裹c(diǎn)在軸上的橢圓,所以,所以,即為真時(shí),所以為假時(shí)參數(shù)的取值范圍為或,因?yàn)槊}為真,命題或?yàn)檎?,所以為假,為真,?8、(1)證明見(jiàn)解析;(2).【解析】(1)設(shè)為中點(diǎn),連接,根據(jù),證明平面得到答案.(2)以為原點(diǎn),,,分別為,,軸建立空間直角坐標(biāo)系,計(jì)算各點(diǎn)坐標(biāo),計(jì)算平面和平面的法向量,根據(jù)向量夾角公式計(jì)算得到答案.【詳解】(1)設(shè)為中點(diǎn),連接,,∵,∴,又∵底面四邊形為菱形,,∴為等邊三角形,∴,又∴,,平面,∴平面,而平面,∴.(2)∵平面平面,平面平面,,∴平面以為原點(diǎn),,,分別為,,軸建立空間直角坐標(biāo)系,則,,,,,,由,,,即,∴,,,設(shè)為平面的法向量,則由,令,得,,∴,設(shè)為平面的法向量,則由,令,得,,∴,設(shè)二面角的平面角為,則,∴二面角的的余弦值為.【點(diǎn)睛】本題考查了線線垂直,二面角,意在考查學(xué)生的計(jì)算能力和空間想象能力,建立空間直角坐標(biāo)系是解題的關(guān)鍵.19、(1);(2).【解析】(1)利用橢圓的焦點(diǎn)與拋物線的焦點(diǎn)相同,列出方程求解即可(2)設(shè),、,,聯(lián)立直線與拋物線方程,利用韋達(dá)定理,通過(guò),求出,得到直線方程【小問(wèn)1詳解】由題意知:,,∴的方程是【小問(wèn)2詳解】設(shè),、,,由題意知,由,得,∴,,,∵以為直徑的圓過(guò)點(diǎn),∴,即,∴,解得,∴直線的方程是20、(1)或;(2)或.【解析】(1)由圓的方程可得圓心和半徑,當(dāng)直線斜率不存在時(shí),知與圓相切,滿足題意;當(dāng)直線斜率存在時(shí),利用圓心到直線距離等于半徑可構(gòu)造方程求得,由此可得方程;(2)當(dāng)直線斜率不存在時(shí),知與圓相切,不合題意;當(dāng)直線斜率存在時(shí),利用垂徑定理可構(gòu)造方程求得,由此可得方程.【小問(wèn)1詳解】由圓的方程知:圓心,半徑;當(dāng)直線斜率不存在,即時(shí),與圓相切,滿足題意;當(dāng)直線斜率存在時(shí),設(shè),即,圓心到直線距離,解得:,,即;綜上所述:直線方程為或;【小問(wèn)2詳解】當(dāng)直線斜率不存在,即時(shí),與圓相切,不合題意;當(dāng)直線斜率存在時(shí),設(shè),即,圓心到直線距離,,解得:或,直線的方程為或.21、(1)(2)【解析】(1)設(shè)的公差為,根據(jù)題意列出關(guān)于和的方程組,求解方程組,再根據(jù)等差數(shù)列的通項(xiàng)公式,即可求出結(jié)果.(2)對(duì)數(shù)列中項(xiàng)的正負(fù)情況進(jìn)行討論,再結(jié)合等差數(shù)列的前項(xiàng)和公式,即可求出結(jié)果.【小問(wèn)1詳解】解:設(shè)的公差為d,因?yàn)?,,所以解得?【小問(wèn)2詳解】解:設(shè)的前項(xiàng)和為,則.當(dāng)時(shí),,所以所以;當(dāng)時(shí),.所以.22、(1)(2)證明見(jiàn)解析.(3)【解析】(1)由已知關(guān)系得出是等差數(shù)列及公差,然后可得通項(xiàng)公式;(2)由已知關(guān)系式,利用累加法證明
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版社會(huì)組織委托公益項(xiàng)目管理人員招聘合同3篇
- 張家口學(xué)院《公路工程估價(jià)》2023-2024學(xué)年第一學(xué)期期末試卷
- 棗莊學(xué)院《Spark大數(shù)據(jù)技術(shù)與應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷
- 云南現(xiàn)代職業(yè)技術(shù)學(xué)院《公共管理前沿專題》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025年度個(gè)人寵物醫(yī)療貸款合同模板4篇
- 云南農(nóng)業(yè)職業(yè)技術(shù)學(xué)院《地圖設(shè)計(jì)與電子地圖學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 煙霧探測(cè)器的報(bào)警信號(hào)和處理方法
- 云南經(jīng)濟(jì)管理學(xué)院《個(gè)人投資理財(cái)》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025版駱采與周紅的二零二五離婚后財(cái)產(chǎn)分割及債務(wù)承擔(dān)合同4篇
- 借款第三方擔(dān)保合同范本
- 河道旅游開(kāi)發(fā)合同
- 導(dǎo)尿及留置導(dǎo)尿技術(shù)
- 情人合同范例
- 建筑公司勞務(wù)合作協(xié)議書(shū)范本
- 安徽省合肥市2023-2024學(xué)年高一上學(xué)期物理期末試卷(含答案)
- 《基于杜邦分析法的公司盈利能力研究的國(guó)內(nèi)外文獻(xiàn)綜述》2700字
- 儒家思想講解課程設(shè)計(jì)
- 2024年個(gè)人汽車(chē)抵押借款合同范本(四篇)
- 2024-2025學(xué)年九年級(jí)化學(xué)上冊(cè) 第二單元 單元測(cè)試卷(人教版)
- 軌道交通設(shè)備更新項(xiàng)目可行性研究報(bào)告-超長(zhǎng)期國(guó)債
- 2024-2030年中國(guó)一氧化二氮?dú)怏w行業(yè)市場(chǎng)發(fā)展趨勢(shì)與前景展望戰(zhàn)略分析報(bào)告
評(píng)論
0/150
提交評(píng)論