山西?。ㄟ\城地區(qū))達標名校2023-2024學年中考五模數(shù)學試題含解析_第1頁
山西?。ㄟ\城地區(qū))達標名校2023-2024學年中考五模數(shù)學試題含解析_第2頁
山西?。ㄟ\城地區(qū))達標名校2023-2024學年中考五模數(shù)學試題含解析_第3頁
山西?。ㄟ\城地區(qū))達標名校2023-2024學年中考五模數(shù)學試題含解析_第4頁
山西省(運城地區(qū))達標名校2023-2024學年中考五模數(shù)學試題含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

山西?。ㄟ\城地區(qū))達標名校2023-2024學年中考五模數(shù)學試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.在方格紙中,選擇標有序號①②③④中的一個小正方形涂黑,與圖中陰影部分構成中心對稱圖形.該小正方形的序號是()A.① B.② C.③ D.④2.隨著“三農(nóng)”問題的解決,某農(nóng)民近兩年的年收入發(fā)生了明顯變化,已知前年和去年的收入分別是60000元和80000元,下面是依據(jù)①②③三種農(nóng)作物每種作物每年的收入占該年年收入的比例繪制的扇形統(tǒng)計圖.依據(jù)統(tǒng)計圖得出的以下四個結論正確的是()A.①的收入去年和前年相同B.③的收入所占比例前年的比去年的大C.去年②的收入為2.8萬D.前年年收入不止①②③三種農(nóng)作物的收入3.為確保信息安全,信息需加密傳輸,發(fā)送方將明文加密后傳輸給接收方,接收方收到密文后解密還原為明文,已知某種加密規(guī)則為,明文a,b對應的密文為a+2b,2a-b,例如:明文1,2對應的密文是5,0,當接收方收到的密文是1,7時,解密得到的明文是()A.3,-1 B.1,-3 C.-3,1 D.-1,34.氣象臺預報“本市明天下雨的概率是85%”,對此信息,下列說法正確的是()A.本市明天將有的地區(qū)下雨 B.本市明天將有的時間下雨C.本市明天下雨的可能性比較大 D.本市明天肯定下雨5.一次函數(shù)與反比例函數(shù)在同一個坐標系中的圖象可能是()A. B. C. D.6.如圖的立體圖形,從左面看可能是()A. B.C. D.7.二次函數(shù)y=ax2+c的圖象如圖所示,正比例函數(shù)y=ax與反比例函數(shù)y=在同一坐標系中的圖象可能是()A. B. C. D.8.計算的結果是()A.1 B.﹣1 C.1﹣x D.9.正方形ABCD和正方形BPQR的面積分別為16、25,它們重疊的情形如圖所示,其中R點在AD上,CD與QR相交于S點,則四邊形RBCS的面積為()A.8 B. C. D.10.下列計算正確的是()A.a(chǎn)+a=2a B.b3?b3=2b3 C.a(chǎn)3÷a=a3 D.(a5)2=a7二、填空題(共7小題,每小題3分,滿分21分)11.如圖,將△AOB繞點O按逆時針方向旋轉45°后得到△COD,若∠AOB=15°,則∠AOD=_____度.12.分式方程的解為__________.13.若一個等腰三角形的周長為26,一邊長為6,則它的腰長為____.14.2018年5月18日,益陽新建西流灣大橋竣工通車,如圖,從沅江A地到資陽B地有兩條路線可走,從資陽B地到益陽火車站可經(jīng)會龍山大橋或西流灣大橋或龍洲大橋到達,現(xiàn)讓你隨機選擇一條從沅江A地出發(fā)經(jīng)過資陽B地到達益陽火車站的行走路線,那么恰好選到經(jīng)過西流灣大橋的路線的概率是_____.15.因式分解:9a3b﹣ab=_____.16.有一枚材質(zhì)均勻的正方體骰子,它的六個面上分別有1點、2點、…、6點的標記,擲一次骰子,向上的一面出現(xiàn)的點數(shù)是素數(shù)的概率是_____.17.如圖,在直角坐標系中,⊙A的圓心A的坐標為(1,0),半徑為1,點P為直線y=x+3上的動點,過點P作⊙A的切線,切點為Q,則切線長PQ的最小值是______________.三、解答題(共7小題,滿分69分)18.(10分)已知拋物線y=﹣2x2+4x+c.(1)若拋物線與x軸有兩個交點,求c的取值范圍;(2)若拋物線經(jīng)過點(﹣1,0),求方程﹣2x2+4x+c=0的根.19.(5分)如圖,四邊形ABCD是邊長為2的正方形,以點A,B,C為圓心作圓,分別交BA,CB,DC的延長線于點E,F(xiàn),G.(1)求點D沿三條圓弧運動到點G所經(jīng)過的路線長;(2)判斷線段GB與DF的長度關系,并說明理由.20.(8分)“鐵路建設助推經(jīng)濟發(fā)展”,近年來我國政府十分重視鐵路建設.渝利鐵路通車后,從重慶到上海比原鐵路全程縮短了320千米,列車設計運行時速比原鐵路設計運行時速提高了120千米/小時,全程設計運行時間只需8小時,比原鐵路設計運行時間少用16小時.(1)渝利鐵路通車后,重慶到上海的列車設計運行里程是多少千米?(2)專家建議:從安全的角度考慮,實際運行時速減少m%,以便于有充分時間應對突發(fā)事件,這樣,從重慶到上海的實際運行時間將增加m%小時,求m的值.21.(10分)如圖,在中,,是邊上的高線,平分交于點,經(jīng)過,兩點的交于點,交于點,為的直徑.(1)求證:是的切線;(2)當,時,求的半徑.22.(10分)如圖①,二次函數(shù)的拋物線的頂點坐標C,與x軸的交于A(1,0)、B(﹣3,0)兩點,與y軸交于點D(0,3).(1)求這個拋物線的解析式;(2)如圖②,過點A的直線與拋物線交于點E,交y軸于點F,其中點E的橫坐標為﹣2,若直線PQ為拋物線的對稱軸,點G為直線PQ上的一動點,則x軸上是否存在一點H,使D、G、H、F四點所圍成的四邊形周長最???若存在,求出這個最小值及點G、H的坐標;若不存在,請說明理由;(3)如圖③,連接AC交y軸于M,在x軸上是否存在點P,使以P、C、M為頂點的三角形與△AOM相似?若存在,求出點P的坐標;若不存在,請說明理由.23.(12分)我國古代數(shù)學著作《增刪算法統(tǒng)宗》記載“繩索量竿”問題:“一條竿子一條索,索比竿子長一托,折回索子卻量竿,卻比竿子短一托”其大意為:現(xiàn)有一根竿和一根繩索,用繩索去量竿,繩索比竿長5尺;如果將繩索對半折后再去量竿,就比竿短5尺.求繩索長和竿長.24.(14分)全民健身運動已成為一種時尚,為了解揭陽市居民健身運動的情況,某健身館的工作人員開展了一項問卷調(diào)查,問卷內(nèi)容包括五個項目:A:健身房運動;B:跳廣場舞;C:參加暴走團;D:散步;E:不運動.以下是根據(jù)調(diào)查結果繪制的統(tǒng)計圖表的一部分,運動形式ABCDE人數(shù)請你根據(jù)以上信息,回答下列問題:接受問卷調(diào)查的共有人,圖表中的,.統(tǒng)計圖中,類所對應的扇形的圓心角的度數(shù)是度.揭陽市環(huán)島路是市民喜愛的運動場所之一,每天都有“暴走團”活動,若某社區(qū)約有人,請你估計一下該社區(qū)參加環(huán)島路“暴走團”的人數(shù).

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】根據(jù)中心對稱圖形的概念,中心對稱圖形是圖形沿對稱中心旋轉180度后與原圖重合。因此,通過觀察發(fā)現(xiàn),當涂黑②時,所形成的圖形關于點A中心對稱。故選B。2、C【解析】

A、前年①的收入為60000×=19500,去年①的收入為80000×=26000,此選項錯誤;B、前年③的收入所占比例為×100%=30%,去年③的收入所占比例為×100%=32.5%,此選項錯誤;C、去年②的收入為80000×=28000=2.8(萬元),此選項正確;D、前年年收入即為①②③三種農(nóng)作物的收入,此選項錯誤,故選C.【點睛】本題主要考查扇形統(tǒng)計圖,解題的關鍵是掌握扇形統(tǒng)計圖是用整個圓表示總數(shù)用圓內(nèi)各個扇形的大小表示各部分數(shù)量占總數(shù)的百分數(shù),并且通過扇形統(tǒng)計圖可以很清楚地表示出各部分數(shù)量同總數(shù)之間的關系.3、A【解析】

根據(jù)題意可得方程組,再解方程組即可.【詳解】由題意得:,解得:,故選A.4、C【解析】試題解析:根據(jù)概率表示某事情發(fā)生的可能性的大小,分析可得:A、明天降水的可能性為85%,并不是有85%的地區(qū)降水,錯誤;B、本市明天將有85%的時間降水,錯誤;C、明天降水的可能性為90%,說明明天降水的可能性比較大,正確;D、明天肯定下雨,錯誤.故選C.考點:概率的意義.5、B【解析】當k>0時,一次函數(shù)y=kx﹣k的圖象過一、三、四象限,反比例函數(shù)y=的圖象在一、三象限,∴A、C不符合題意,B符合題意;當k<0時,一次函數(shù)y=kx﹣k的圖象過一、二、四象限,反比例函數(shù)y=的圖象在二、四象限,∴D不符合題意.故選B.6、A【解析】

根據(jù)三視圖的性質(zhì)即可解題.【詳解】解:根據(jù)三視圖的概念可知,該立體圖形是三棱柱,左視圖應為三角形,且直角應該在左下角,故選A.【點睛】本題考查了三視圖的識別,屬于簡單題,熟悉三視圖的概念是解題關鍵.7、C【解析】

根據(jù)二次函數(shù)圖像位置確定a0,c0,即可確定正比例函數(shù)和反比例函數(shù)圖像位置.【詳解】解:由二次函數(shù)的圖像可知a0,c0,∴正比例函數(shù)過二四象限,反比例函數(shù)過一三象限.故選C.【點睛】本題考查了函數(shù)圖像的性質(zhì),屬于簡單題,熟悉系數(shù)與函數(shù)圖像的關系是解題關鍵.8、B【解析】

根據(jù)同分母分式的加減運算法則計算可得.【詳解】解:原式====-1,故選B.【點睛】本題主要考查分式的加減法,解題的關鍵是熟練掌握同分母分式的加減運算法則.9、D【解析】

根據(jù)正方形的邊長,根據(jù)勾股定理求出AR,求出△ABR∽△DRS,求出DS,根據(jù)面積公式求出即可.【詳解】∵正方形ABCD的面積為16,正方形BPQR面積為25,∴正方形ABCD的邊長為4,正方形BPQR的邊長為5,在Rt△ABR中,AB=4,BR=5,由勾股定理得:AR=3,∵四邊形ABCD是正方形,∴∠A=∠D=∠BRQ=90°,∴∠ABR+∠ARB=90°,∠ARB+∠DRS=90°,∴∠ABR=∠DRS,∵∠A=∠D,∴△ABR∽△DRS,∴,∴,∴DS=,∴∴陰影部分的面積S=S正方形ABCD-S△ABR-S△RDS=4×4-×4×3-××1=,故選:D.【點睛】本題考查了正方形的性質(zhì),相似三角形的性質(zhì)和判定,能求出△ABR和△RDS的面積是解此題的關鍵.10、A【解析】

根據(jù)合并同類項法則;同底數(shù)冪相乘,底數(shù)不變指數(shù)相加;同底數(shù)冪相除,底數(shù)不變指數(shù)相減;冪的乘方,底數(shù)不變指數(shù)相乘對各選項分析判斷后利用排除法求解.【詳解】A.a+a=2a,故本選項正確;B.,故本選項錯誤;C.,故本選項錯誤;D.,故本選項錯誤.故選:A.【點睛】考查同底數(shù)冪的除法,合并同類項,同底數(shù)冪的乘法,冪的乘方與積的乘方,比較基礎,掌握運算法則是解題的關鍵.二、填空題(共7小題,每小題3分,滿分21分)11、30°【解析】

根據(jù)旋轉的性質(zhì)得到∠BOD=45°,再用∠BOD減去∠AOB即可.【詳解】∵將△AOB繞點O按逆時針方向旋轉45°后,得到△COD,∴∠BOD=45°,又∵∠AOB=15°,∴∠AOD=∠BOD-∠AOB=45°-15°=30°.故答案為30°.12、-1【解析】【分析】先去分母,化為整式方程,然后再進行檢驗即可得.【詳解】兩邊同乘(x+2)(x-2),得:x-2﹣3x=0,解得:x=-1,檢驗:當x=-1時,(x+2)(x-2)≠0,所以x=-1是分式方程的解,故答案為:-1.【點睛】本題考查了解分式方程,熟練掌握解分式方程的一般步驟以及注意事項是解題的關鍵.13、1【解析】

題中給出了周長和一邊長,而沒有指明這邊是否為腰長,則應該分兩種情況進行分析求解.【詳解】①當6為腰長時,則腰長為6,底邊=26-6-6=14,因為14>6+6,所以不能構成三角形;②當6為底邊時,則腰長=(26-6)÷2=1,因為6-6<1<6+6,所以能構成三角形;故腰長為1.故答案為:1.【點睛】此題主要考查等腰三角形的性質(zhì)及三角形三邊關系的綜合運用,關鍵是利用三角形三邊關系進行檢驗.14、.【解析】

由題意可知一共有6種可能,經(jīng)過西流灣大橋的路線有2種可能,根據(jù)概率公式計算即可.【詳解】解:由題意可知一共有6種可能,經(jīng)過西流灣大橋的路線有2種可能,所以恰好選到經(jīng)過西流灣大橋的路線的概率=.故答案為.【點睛】本題考查的是用列表法或畫樹狀圖法求概率.注意列表法或畫樹狀圖法可以不重復不遺漏的列出所有可能的結果,列表法適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件.注意概率=所求情況數(shù)與總情況數(shù)之比.15、ab(3a+1)(3a-1).【解析】試題分析:原式提取公因式后,利用平方差公式分解即可.試題解析:原式=ab(9a2-1)=ab(3a+1)(3a-1).考點:提公因式法與公式法的綜合運用.16、【解析】

先判斷擲一次骰子,向上的一面的點數(shù)為素數(shù)的情況,再利用概率公式求解即可.【詳解】解:∵擲一次這枚骰子,向上的一面的點數(shù)為素數(shù)的有2,3,5共3種情況,∴擲一次這枚骰子,向上的一面的點數(shù)為素數(shù)的概率是:.故答案為:.【點睛】本題考查了求簡單事件的概率,根據(jù)題意判斷出素數(shù)的個數(shù)是解題的關鍵.17、2【解析】分析:因為BP=,AB的長不變,當PA最小時切線長PB最小,所以點P是過點A向直線l所作垂線的垂足,利用△APC≌△DOC求出AP的長即可求解.詳解:如圖,作AP⊥直線y=x+3,垂足為P,此時切線長PB最小,設直線與x軸,y軸分別交于D,C.∵A的坐標為(1,0),∴D(0,3),C(﹣4,0),∴OD=3,AC=5,∴DC==5,∴AC=DC,在△APC與△DOC中,∠APC=∠COD=90°,∠ACP=∠DCO,AC=DC,∴△APC≌△DOC,∴AP=OD=3,∴PB==2.故答案為2.點睛:本題考查了切線的性質(zhì),全等三角形的判定性質(zhì),勾股定理及垂線段最短,因為直角三角形中的三邊長滿足勾股定理,所以當其中的一邊的長不變時,即可根據(jù)另一邊的取值情況確定第三邊的最大值或最小值.三、解答題(共7小題,滿分69分)18、(1)c>﹣2;(2)x1=﹣1,x2=1.【解析】

(1)根據(jù)拋物線與x軸有兩個交點,b2-4ac>0列不等式求解即可;

(2)先求出拋物線的對稱軸,再根據(jù)拋物線的對稱性求出拋物線與x軸的另一個交點坐標,然后根據(jù)二次函數(shù)與一元二次方程的關系解答.【詳解】(1)解:∵拋物線與x軸有兩個交點,∴b2﹣4ac>0,即16+8c>0,解得c>﹣2;(2)解:由y=﹣2x2+4x+c得拋物線的對稱軸為直線x=1,∵拋物線經(jīng)過點(﹣1,0),∴拋物線與x軸的另一個交點為(1,0),∴方程﹣2x2+4x+c=0的根為x1=﹣1,x2=1.【點睛】考查了拋物線與x軸的交點問題、二次函數(shù)與一元二次方程,解題關鍵是運用了根與系數(shù)的關系以及二次函數(shù)的對稱性.19、(1)6π;(2)GB=DF,理由詳見解析.【解析】

(1)根據(jù)弧長公式l=nπr180【詳解】解:(1)∵AD=2,∠DAE=90°,

∴弧DE的長l1=90×π×2180=π,

同理弧EF的長l2=90×π×4180=2π,弧FG的長l3=90×π×6180=3π,

所以,點D運動到點G所經(jīng)過的路線長l=l1+l2+l【點睛】本題考查弧長公式以及全等三角形的判定和性質(zhì),題目比較簡單,解題關鍵掌握是弧長公式.20、(1)1600千米;(2)1【解析】試題分析:(1)利用“從重慶到上海比原鐵路全程縮短了320千米,列車設計運行時速比原鐵路設計運行時速提高了l20千米/小時,全程設計運行時間只需8小時,比原鐵路設計運行時間少用16小時”,分別得出等式組成方程組求出即可;

(2)根據(jù)題意得出方程(80+120)(1-m%)(8+m%)=1600,進而解方程求出即可.試題解析:(1)設原時速為xkm/h,通車后里程為ykm,則有:,解得:.答:渝利鐵路通車后,重慶到上海的列車設計運行里程是1600千米;(2)由題意可得出:(80+120)(1﹣m%)(8+m%)=1600,解得:m1=1,m2=0(不合題意舍去),答:m的值為1.21、(1)見解析;(2)的半徑是.【解析】

(1)連結,易證,由于是邊上的高線,從而可知,所以是的切線.(2)由于,從而可知,由,可知:,易證,所以,再證明,所以,從而可求出.【詳解】解:(1)連結.∵平分,∴,又,∴,∴,∵是邊上的高線,∴,∴,∴是的切線.(2)∵,∴,,∴是中點,∴,∵,∴,∵,,∴,∴,又∵,∴,在中,,∴,∴,,而,∴,∴,∴的半徑是.【點睛】本題考查圓的綜合問題,涉及銳角三角函數(shù),相似三角形的判定與性質(zhì),等腰三角形的性質(zhì)等知識,綜合程度較高,需要學生綜合運用知識的能力.22、【小題1】設所求拋物線的解析式為:,將A(1,0)、B(-3,0)、D(0,3)代入,得…………2分即所求拋物線的解析式為:……………3分【小題2】如圖④,在y軸的負半軸上取一點I,使得點F與點I關于x軸對稱,在x軸上取一點H,連接HF、HI、HG、GD、GE,則HF=HI…①設過A、E兩點的一次函數(shù)解析式為:y=kx+b(k≠0),∵點E在拋物線上且點E的橫坐標為-2,將x=-2,代入拋物線,得∴點E坐標為(-2,3)………………4分又∵拋物線圖象分別與x軸、y軸交于點A(1,0)、B(-3,0)、D(0,3),所以頂點C(-1,4)∴拋物線的對稱軸直線PQ為:直線x=-1,[中國教#&~@育出%版網(wǎng)]∴點D與點E關于PQ對稱,GD=GE……………②分別將點A(1,0)、點E(-2,3)代入y=kx+b,得:k+b=0,-2k+b=3解得:過A、E兩點的一次函數(shù)解析式為:y=-x+1∴當x=0時,y=1∴點F坐標為(0,1)……5分∴|DF|=2………③又∵點F與點I關于x軸對稱,∴點I坐標為(0,-1)∴|EI|=(-2-0)又∵要使四邊形DFHG的周長最小,由于DF是一個定值,∴只要使DG+GH+HI最小即可……6分由圖形的對稱性和①、②、③,可知,DG+GH+HF=EG+GH+HI只有當EI為一條直線時,EG+GH+HI最小設過E(-2,3)、I(0,-1)兩點的函數(shù)解析式為:y=k分別將點E(-2,3)、點I(0,-1)代入y=k-2k1過I、E兩點的一次函數(shù)解析式為:y=-2x-1∴當x=-1時,y=1;當y=0時,x=-12∴點G坐標為(-1,1),點H坐標為(-12∴四邊形DFHG的周長最小為:DF+DG+GH+HF=DF+EI由③和④,可知:DF+EI=2+2∴四邊形DFHG的周長最小為2+25【小題3】如圖⑤,由(2)可知,點A(1,0),點C(-1,4),設過A(1,0),點C(-1,4)兩點的函數(shù)解析式為:,得:k2解得:k2過A、C兩點的一次函數(shù)解析式為:y=-2x+2,當x=0時,y=2,即M的坐標為(0,2);由圖可知,△AOM為直角三角形,且OAOM要使,△AOM與△PCM相似,只要使△PCM為直角三角形,且兩直角邊之比為1:2即可,設P(,0),CM=,且∠CPM不可能為90°時,因此可分兩種情況討論;……………9分①當∠CMP=90°時,CM=,若則,可求的P(-4,0),則CP=5,,即P(-4,0)成立,若由圖可判斷不成立;……………………10分②當∠PCM=90°時,CM=,若則,可求出P(-3,0),則PM=,顯然不成立,若則,更不可能成立.……11分綜上所述,存在以P、C、M為頂點的三角形與△AOM相似,點P的坐標為(-4,0)12分【解析】(1)直接利用三點式求出二次函數(shù)的解析式;(2)若四邊形DFHG的周長最小,應將邊長

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論