版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年黑龍江省雙鴨山市重點(diǎn)中學(xué)高三4月仿真模擬(六)數(shù)學(xué)試題試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知,則“m⊥n”是“m⊥l”的A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件2.函數(shù)的大致圖象為()A. B.C. D.3.已知集合,則集合()A. B. C. D.4.函數(shù)與在上最多有n個(gè)交點(diǎn),交點(diǎn)分別為(,……,n),則()A.7 B.8 C.9 D.105.等比數(shù)列若則()A.±6 B.6 C.-6 D.6.下列幾何體的三視圖中,恰好有兩個(gè)視圖相同的幾何體是()A.正方體 B.球體C.圓錐 D.長寬高互不相等的長方體7.已知橢圓,直線與直線相交于點(diǎn),且點(diǎn)在橢圓內(nèi)恒成立,則橢圓的離心率取值范圍為()A. B. C. D.8.若函數(shù)的圖象向右平移個(gè)單位長度得到函數(shù)的圖象,若函數(shù)在區(qū)間上單調(diào)遞增,則的最大值為().A. B. C. D.9.已知函數(shù),關(guān)于的方程R)有四個(gè)相異的實(shí)數(shù)根,則的取值范圍是(
)A. B. C. D.10.某幾何體的三視圖如圖所示,則該幾何體的體積為()A. B. C. D.11.已知函,,則的最小值為()A. B.1 C.0 D.12.已知復(fù)數(shù)是純虛數(shù),其中是實(shí)數(shù),則等于()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)實(shí)數(shù)x,y滿足,則點(diǎn)表示的區(qū)域面積為______.14.若x,y滿足,且y≥?1,則3x+y的最大值_____15.已知圓柱的上、下底面的中心分別為,,過直線的平面截該圓柱所得的截面是面積為8的正方形,則該圓柱的表面積為______.16.我國著名的數(shù)學(xué)家秦九韶在《數(shù)書九章》提出了“三斜求積術(shù)”.他把三角形的三條邊分別稱為小斜、中斜和大斜.三斜求積術(shù)就是用小斜平方加上大斜平方,送到中斜平方,取相減后余數(shù)的一半,自乘而得一個(gè)數(shù),小斜平方乘以大斜平方,送到上面得到的那個(gè)數(shù),相減后余數(shù)被4除,所得的數(shù)作為“實(shí)”,1作為“隅”,開平方后即得面積.所謂“實(shí)”、“隅”指的是在方程中,p為“隅”,q為“實(shí)”.即若的大斜、中斜、小斜分別為a,b,c,則.已知點(diǎn)D是邊AB上一點(diǎn),,,,,則的面積為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知,,分別是三個(gè)內(nèi)角,,的對(duì)邊,.(1)求;(2)若,,求,.18.(12分)電視傳媒公司為了解某地區(qū)觀眾對(duì)某體育節(jié)目的收視情況,隨機(jī)抽取了100名觀眾進(jìn)行調(diào)查,其中女性有55名,下面是根據(jù)調(diào)查結(jié)果繪制的觀眾日均收看該體育節(jié)目時(shí)間的頻率分布直方圖:將日均收看該體育節(jié)目時(shí)間不低于40分鐘的觀眾稱為“體育迷”.(1)根據(jù)已知條件完成下面的列聯(lián)表,并據(jù)此資料你是否認(rèn)為“體育迷”與性別有關(guān)?非體育迷體育迷合計(jì)男女1055合計(jì)(2)將上述調(diào)查所得到的頻率視為概率.現(xiàn)在從該地區(qū)大量電視觀眾中,采用隨機(jī)抽樣方法每次抽取1名觀眾,抽取3次,記被抽取的3名觀眾中的“體育迷”人數(shù)為X.若每次抽取的結(jié)果是相互獨(dú)立的,求X的分布列,期望E(X)和方差D(X).附:.P(K2≥k)0.050.01k3.8416.63519.(12分)在四棱錐中,底面是邊長為2的菱形,是的中點(diǎn).(1)證明:平面;(2)設(shè)是直線上的動(dòng)點(diǎn),當(dāng)點(diǎn)到平面距離最大時(shí),求面與面所成二面角的正弦值.20.(12分)選修4-5:不等式選講設(shè)函數(shù).(1)當(dāng)時(shí),求不等式的解集;(2)若在上恒成立,求實(shí)數(shù)的取值范圍.21.(12分)三棱柱中,平面平面,,點(diǎn)為棱的中點(diǎn),點(diǎn)為線段上的動(dòng)點(diǎn).(1)求證:;(2)若直線與平面所成角為,求二面角的正切值.22.(10分)設(shè),函數(shù).(1)當(dāng)時(shí),求在內(nèi)的極值;(2)設(shè)函數(shù),當(dāng)有兩個(gè)極值點(diǎn)時(shí),總有,求實(shí)數(shù)的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.B【解析】
構(gòu)造長方體ABCD﹣A1B1C1D1,令平面α為面ADD1A1,底面ABCD為β,然后再在這兩個(gè)面中根據(jù)題意恰當(dāng)?shù)倪x取直線為m,n即可進(jìn)行判斷.【詳解】如圖,取長方體ABCD﹣A1B1C1D1,令平面α為面ADD1A1,底面ABCD為β,直線=直線。若令A(yù)D1=m,AB=n,則m⊥n,但m不垂直于若m⊥,由平面平面可知,直線m垂直于平面β,所以m垂直于平面β內(nèi)的任意一條直線∴m⊥n是m⊥的必要不充分條件.故選:B.【點(diǎn)睛】本題考點(diǎn)有兩個(gè):①考查了充分必要條件的判斷,在確定好大前提的條件下,從m⊥n?m⊥?和m⊥?m⊥n?兩方面進(jìn)行判斷;②是空間的垂直關(guān)系,一般利用長方體為載體進(jìn)行分析.2.A【解析】
利用特殊點(diǎn)的坐標(biāo)代入,排除掉C,D;再由判斷A選項(xiàng)正確.【詳解】,排除掉C,D;,,,.故選:A.【點(diǎn)睛】本題考查了由函數(shù)解析式判斷函數(shù)的大致圖象問題,代入特殊點(diǎn),采用排除法求解是解決這類問題的一種常用方法,屬于中檔題.3.D【解析】
弄清集合B的含義,它的元素x來自于集合A,且也是集合A的元素.【詳解】因,所以,故,又,,則,故集合.故選:D.【點(diǎn)睛】本題考查集合的定義,涉及到解絕對(duì)值不等式,是一道基礎(chǔ)題.4.C【解析】
根據(jù)直線過定點(diǎn),采用數(shù)形結(jié)合,可得最多交點(diǎn)個(gè)數(shù),然后利用對(duì)稱性,可得結(jié)果.【詳解】由題可知:直線過定點(diǎn)且在是關(guān)于對(duì)稱如圖通過圖像可知:直線與最多有9個(gè)交點(diǎn)同時(shí)點(diǎn)左、右邊各四個(gè)交點(diǎn)關(guān)于對(duì)稱所以故選:C【點(diǎn)睛】本題考查函數(shù)對(duì)稱性的應(yīng)用,數(shù)形結(jié)合,難點(diǎn)在于正確畫出圖像,同時(shí)掌握基礎(chǔ)函數(shù)的性質(zhì),屬難題.5.B【解析】
根據(jù)等比中項(xiàng)性質(zhì)代入可得解,由等比數(shù)列項(xiàng)的性質(zhì)確定值即可.【詳解】由等比數(shù)列中等比中項(xiàng)性質(zhì)可知,,所以,而由等比數(shù)列性質(zhì)可知奇數(shù)項(xiàng)符號(hào)相同,所以,故選:B.【點(diǎn)睛】本題考查了等比數(shù)列中等比中項(xiàng)的簡單應(yīng)用,注意項(xiàng)的符號(hào)特征,屬于基礎(chǔ)題.6.C【解析】
根據(jù)基本幾何體的三視圖確定.【詳解】正方體的三個(gè)三視圖都是相等的正方形,球的三個(gè)三視圖都是相等的圓,圓錐的三個(gè)三視圖有一個(gè)是圓,另外兩個(gè)是全等的等腰三角形,長寬高互不相等的長方體的三視圖是三個(gè)兩兩不全等的矩形.故選:C.【點(diǎn)睛】本題考查基本幾何體的三視圖,掌握基本幾何體的三視圖是解題關(guān)鍵.7.A【解析】
先求得橢圓焦點(diǎn)坐標(biāo),判斷出直線過橢圓的焦點(diǎn).然后判斷出,判斷出點(diǎn)的軌跡方程,根據(jù)恒在橢圓內(nèi)列不等式,化簡后求得離心率的取值范圍.【詳解】設(shè)是橢圓的焦點(diǎn),所以.直線過點(diǎn),直線過點(diǎn),由于,所以,所以點(diǎn)的軌跡是以為直徑的圓.由于點(diǎn)在橢圓內(nèi)恒成立,所以橢圓的短軸大于,即,所以,所以雙曲線的離心率,所以.故選:A【點(diǎn)睛】本小題主要考查直線與直線的位置關(guān)系,考查動(dòng)點(diǎn)軌跡的判斷,考查橢圓離心率的取值范圍的求法,屬于中檔題.8.C【解析】
由題意利用函數(shù)的圖象變換規(guī)律,正弦函數(shù)的單調(diào)性,求出的最大值.【詳解】解:把函數(shù)的圖象向右平移個(gè)單位長度得到函數(shù)的圖象,若函數(shù)在區(qū)間,上單調(diào)遞增,在區(qū)間,上,,,則當(dāng)最大時(shí),,求得,故選:C.【點(diǎn)睛】本題主要考查函數(shù)的圖象變換規(guī)律,正弦函數(shù)的單調(diào)性,屬于基礎(chǔ)題.9.A【解析】=,當(dāng)時(shí)時(shí),單調(diào)遞減,時(shí),單調(diào)遞增,且當(dāng),當(dāng),
當(dāng)時(shí),恒成立,時(shí),單調(diào)遞增且,方程R)有四個(gè)相異的實(shí)數(shù)根.令=則,,即.10.A【解析】
利用已知條件畫出幾何體的直觀圖,然后求解幾何體的體積.【詳解】幾何體的三視圖的直觀圖如圖所示,則該幾何體的體積為:.故選:.【點(diǎn)睛】本題考查三視圖求解幾何體的體積,判斷幾何體的形狀是解題的關(guān)鍵.11.B【解析】
,利用整體換元法求最小值.【詳解】由已知,又,,故當(dāng),即時(shí),.故選:B.【點(diǎn)睛】本題考查整體換元法求正弦型函數(shù)的最值,涉及到二倍角公式的應(yīng)用,是一道中檔題.12.A【解析】
對(duì)復(fù)數(shù)進(jìn)行化簡,由于為純虛數(shù),則化簡后的復(fù)數(shù)形式中,實(shí)部為0,得到的值,從而得到復(fù)數(shù).【詳解】因?yàn)闉榧兲摂?shù),所以,得所以.故選A項(xiàng)【點(diǎn)睛】本題考查復(fù)數(shù)的四則運(yùn)算,純虛數(shù)的概念,屬于簡單題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
先畫出滿足條件的平面區(qū)域,求出交點(diǎn)坐標(biāo),利用定積分即可求解.【詳解】畫出實(shí)數(shù)x,y滿足表示的平面區(qū)域,如圖(陰影部分):則陰影部分的面積,故答案為:【點(diǎn)睛】本題考查了定積分求曲邊梯形的面積,考查了微積分基本定理,屬于基礎(chǔ)題.14.5.【解析】
由約束條件作出可行域,令z=3x+y,化為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,把最優(yōu)解的坐標(biāo)代入目標(biāo)函數(shù)得答案.【詳解】由題意作出可行域如圖陰影部分所示.設(shè),當(dāng)直線經(jīng)過點(diǎn)時(shí),取最大值5.故答案為:5【點(diǎn)睛】本題考查簡單的線性規(guī)劃,考查數(shù)形結(jié)合的解題思想方法,是中檔題.15.【解析】
設(shè)圓柱的軸截面的邊長為x,可求得,代入圓柱的表面積公式,即得解【詳解】設(shè)圓柱的軸截面的邊長為x,則由,得,∴.故答案為:【點(diǎn)睛】本題考查了圓柱的軸截面和表面積,考查了學(xué)生空間想象,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于基礎(chǔ)題.16..【解析】
利用正切的和角公式求得,再求得,利用余弦定理求得,代入“三斜求積術(shù)”公式即可求得答案.【詳解】,所以,由余弦定理可知,得.根據(jù)“三斜求積術(shù)”可得,所以.【點(diǎn)睛】本題考查正切的和角公式,同角三角函數(shù)的基本關(guān)系式,余弦定理的應(yīng)用,考查學(xué)生分析問題的能力和計(jì)算整理能力,難度較易.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1);(2),或,.【解析】
(1)利用正弦定理,轉(zhuǎn)化原式為,結(jié)合,可得,即得解;(2)由余弦定理,結(jié)合題中數(shù)據(jù),可得解【詳解】(1)由及正弦定理得.因?yàn)?,所以,代入上式并化簡得.由于,所以.又,故.?)因?yàn)椋?,,由余弦定理得?所以.而,所以,為一元二次方程的兩根.所以,或,.【點(diǎn)睛】本題考查了正弦定理,余弦定理的綜合應(yīng)用,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.18.(1)無關(guān);(2),.【解析】
(1)由頻率分布直方圖可知,在抽取的100人中,“體育迷”有25人,從而可得列聯(lián)表如下:非體育迷體育迷合計(jì)男301545女451055合計(jì)7525100將22列聯(lián)表中的數(shù)據(jù)代入公式計(jì)算,得.因?yàn)?.030<3.841,所以我們沒有充分理由認(rèn)為“體育迷”與性別有關(guān).(2)由頻率分布直方圖知抽到“體育迷”的頻率為0.25,將頻率視為概率,即從觀眾中抽取一名“體育迷”的概率.由題意知X~B(3,),從而X的分布列為X0123PE(X)=np==.D(X)=np(1-p)=19.(1)證明見解析(2)【解析】
(1)取中點(diǎn),連接,根據(jù)菱形的性質(zhì),結(jié)合線面垂直的判定定理和性質(zhì)進(jìn)行證明即可;(2)根據(jù)面面垂直的判定定理和性質(zhì)定理,可以確定點(diǎn)到直線的距離即為點(diǎn)到平面的距離,結(jié)合垂線段的性質(zhì)可以確定點(diǎn)到平面的距離最大,最大值為1.以為坐標(biāo)原點(diǎn),直線分別為軸建立空間直角坐標(biāo)系.利用空間向量夾角公式,結(jié)合同角的三角函數(shù)關(guān)系式進(jìn)行求解即可.【詳解】(1)證明:取中點(diǎn),連接,因?yàn)樗倪呅螢榱庑吻?所以,因?yàn)椋?,又,所以平面,因?yàn)槠矫?,所?同理可證,因?yàn)椋云矫?(2)解:由(1)得平面,所以平面平面,平面平面.所以點(diǎn)到直線的距離即為點(diǎn)到平面的距離.過作的垂線段,在所有的垂線段中長度最大的為,此時(shí)必過的中點(diǎn),因?yàn)闉橹悬c(diǎn),所以此時(shí),點(diǎn)到平面的距離最大,最大值為1.以為坐標(biāo)原點(diǎn),直線分別為軸建立空間直角坐標(biāo)系.則所以平面的一個(gè)法向量為,設(shè)平面的法向量為,則即取,則,,所以,所以面與面所成二面角的正弦值為.【點(diǎn)睛】本題考查了線面垂直的判定定理和性質(zhì)的應(yīng)用,考查了二面角的向量求法,考查了推理論證能力和數(shù)學(xué)運(yùn)算能力.20.(1);(2)【解析】
(1)當(dāng)時(shí),將原不等式化簡后兩邊平方,由此解出不等式的解集.(2)對(duì)分成三種情況,利用零點(diǎn)分段法去絕對(duì)值,將表示為分段函數(shù)的形式,根據(jù)單調(diào)性求得的取值范圍.【詳解】(1)時(shí),可得,即,化簡得:,所以不等式的解集為.(2)①當(dāng)時(shí),由函數(shù)單調(diào)性可得,解得;②當(dāng)時(shí),,所以符合題意;③當(dāng)時(shí),由函數(shù)單調(diào)性可得,,解得綜上,實(shí)數(shù)的取值范圍為【點(diǎn)睛】本小題主要考查含有絕對(duì)值不等式的解法,考查不等式恒成立問題的求解,屬于中檔題.21.(1)見解析;(2)【解析】
(1)可證面,從而可得.(2)可證點(diǎn)為線段的三等分點(diǎn),再過作于,過作,垂足為,則為二面角的平面角,利用解直角三角形的方法可求.也可以建立如圖所示的空間直角坐標(biāo)系,利用兩個(gè)平面的法向量來計(jì)算二面角的平面角的余弦值,最后利用同角三角函數(shù)的基本關(guān)系式可求.【詳解】證明:(1)因?yàn)闉橹悬c(diǎn),所以.因?yàn)槠矫嫫矫?,平面平面,平面,所以平面,而平面,故,又因?yàn)?,所以,則,又,故面,又面,所以.(2)由(1)可得:面在面內(nèi)的射影為,則為直線與平面所成的角,即.因?yàn)?,所以,所以,所以,即點(diǎn)為線段的三等分點(diǎn).解法一:過作于,則平面,所以,過作,垂足為,則為二面角的平面角,因?yàn)椋?,,則在中,有,所以二面角的平面角的正切值為.解法二:以點(diǎn)為原點(diǎn),建立如圖所示的空間直角坐標(biāo)系,則,設(shè)點(diǎn),由得:,即,,,點(diǎn),平面的一個(gè)法向量,又,,設(shè)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 電影課程設(shè)計(jì)制作教案
- 2024年網(wǎng)絡(luò)安全系統(tǒng)建設(shè)與維護(hù)服務(wù)合同
- 2025版精裝修別墅配套泳池買賣合同正本2篇
- 二零二五年度公司為個(gè)人提供消費(fèi)信貸合同3篇
- 二零二五年度公路護(hù)欄維護(hù)與保養(yǎng)服務(wù)合同2篇
- 承德護(hù)理職業(yè)學(xué)院《英語微設(shè)計(jì)與制作》2023-2024學(xué)年第一學(xué)期期末試卷
- 二零二五年度個(gè)人房產(chǎn)多人共同擔(dān)保協(xié)議
- 2024年現(xiàn)貨鋼板購買協(xié)議
- 2025版教育培訓(xùn)機(jī)構(gòu)校企合作項(xiàng)目合同協(xié)議3篇
- 2024年鋼結(jié)構(gòu)建筑拆卸協(xié)議3篇
- 湖南2025年湖南電氣職業(yè)技術(shù)學(xué)院招聘14人歷年參考題庫(頻考版)含答案解析
- 生物除臭系統(tǒng)施工方案
- DB51T 1069-2010 四川泡菜生產(chǎn)規(guī)范
- 《電工技術(shù)》課件-電氣安全及電氣火災(zāi)預(yù)防
- 湖南省湘西州吉首市2023屆九年級(jí)上學(xué)期期末素質(zhì)監(jiān)測數(shù)學(xué)試卷(含解析)
- 2023-2024學(xué)年湖北省武漢市東西湖區(qū)三年級(jí)(上)期末數(shù)學(xué)試卷
- GB/T 31771-2024家政服務(wù)母嬰護(hù)理服務(wù)質(zhì)量規(guī)范
- 2023-建筑施工技02課件講解
- 期末試卷:福建省廈門市集美區(qū)2021-2022學(xué)年八年級(jí)上學(xué)期期末歷史試題(原卷版)
- 美容院2024年度規(guī)劃
- 裝飾裝修巡查記錄表
評(píng)論
0/150
提交評(píng)論