《車用驅(qū)動(dòng)電機(jī)原理與控制基礎(chǔ) 第2版》 課件 鐘再敏 Chapter 6 Space Vector Analysis;Chapter 7 Space Vector Description_第1頁
《車用驅(qū)動(dòng)電機(jī)原理與控制基礎(chǔ) 第2版》 課件 鐘再敏 Chapter 6 Space Vector Analysis;Chapter 7 Space Vector Description_第2頁
《車用驅(qū)動(dòng)電機(jī)原理與控制基礎(chǔ) 第2版》 課件 鐘再敏 Chapter 6 Space Vector Analysis;Chapter 7 Space Vector Description_第3頁
《車用驅(qū)動(dòng)電機(jī)原理與控制基礎(chǔ) 第2版》 課件 鐘再敏 Chapter 6 Space Vector Analysis;Chapter 7 Space Vector Description_第4頁
《車用驅(qū)動(dòng)電機(jī)原理與控制基礎(chǔ) 第2版》 課件 鐘再敏 Chapter 6 Space Vector Analysis;Chapter 7 Space Vector Description_第5頁
已閱讀5頁,還剩58頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

Chapter6

SpaceVectorAnalysisofPermanentMagnetSynchronousMotors車用驅(qū)動(dòng)電機(jī)原理與控制基礎(chǔ)(第2版)PrincipleandControlFundamentalsofVehicleDriveMotors26.1PMSMRotorStructureandPhysicalModelPlug-inpermanentmagnetsynchronousmotor(PMSM)embedsorencapsulatesthepermanentmagnetswithintherotorcore,enhancingreliabilityandenablinghigheroperatingspeeds.Specifically,duetothefactthatthepermeabilityofthepermanentmagnetmaterialisclosetothatofvacuum,theairgapintheplug-inPMSMwithaninsertedrotorstructureisnon-uniform,resultingina“salientpole”structurefortherotor.Thisgeneratesreluctancetorque,whichcanimprovethetorque-to-currentratioofthePMSMmotor.Withthesametorquerequirements,itreducestheexcitationfluxofthepermanentmagnet,therebyreducingthevolumeofthepermanentmagnet.Thisisbeneficialforweakmagneticfieldoperations,extendingthespeedrange,andreducingcosts.Therefore,theplug-inPMSMispredominantlyusedinautomotivePMSMmotors.Fig.6-1Surfacemountedrotorstructure

Fig.6-2Plug-inrotorstructure36.1.1PhysicalModelofSurfaceMountedPMSMMotorTakingthecounterclockwisedirectionasthepositivedirectionoftherotationalspeedandelectromagnetictorque.

Forasurface-mountedrotorstructure,sincethepermeabilityinsidethepermanentmagnetsisverysmall,closetotheair,thepermanentmagnetsplacedonthesurfaceoftherotorcanbeequivalenttoexcitationwindingsplacedintherotorslots.Itisassumedthatthesinusoidalmagneticfieldproducedbytheexcitationwindingintheairgapisthesameasthesinusoidaldistributionmagneticfieldproducedbythetwopermanentmagnets.a)Structurediagramb)

RotorequivalentexcitationwindingFig.6-3Physicalmodeloftwo-polesurfacemountedPMSM

46.1.2PhysicalModelofPlug-inPMSMMotorFig.6-3Structurediagramandequivalencephysicalmodelandoftwo-poleplug-inPMSMc)Physicalmodel

b)

Rotorequivalentexcitationwindinga)Structurediagram56.1.3EquivalentUnifiedMotorModelofPMSMFig.6-5Equivalentfour-coilunifiedmotormodelofPMSM

66.2StatorFluxLinkageandVoltageEquations6.2.1Statorfluxlinkagevector

76.2.1Statorfluxlinkagevector

86.2.2StatorVoltageEquation

96.2.3DecompositionofVoltageVectorEquationinSynchronousCoordinateSystem

Fig.6-6ThesynchronousrotatingDQcoordinatesystem

106.2.3DecompositionofVoltageVectorEquationinSynchronousCoordinateSystem

11Fig.6-8SteadystatevectordiagramofsurfacemountedPMSM

6.2.3DecompositionofVoltageVectorEquationinSynchronousCoordinateSystem126.3PMSM

TorqueEquation6.3.1TorqueEquation

136.3.1TorqueEquation

14Fig.6-10Characteristiccurvesoftheconstanttorqueonthecurrentphaseplane

6.3.1TorqueEquation156.3.2ConstantTorqueCurveandMTPAFig.6-11ThestatorcurrentvectortrajectoryfortheMTPA

16Fig.6-13CurrentLimitCircleandMTPACurve

Fig.6-12Torque-anglecharacteristicsunderdifferentcurrentamplitudes6.3.2ConstantTorqueCurveandMTPA176.4PrincipleofField-OrientedControlforPMSM6.4.1VoltageLimitEllipseandTurningSpeed

186.4.1VoltageLimitEllipseandTurningSpeedFig.6-14VoltageLimitEllipse

196.4.1VoltageLimitEllipseandTurningSpeed

20

6.4.1VoltageLimitEllipseandTurningSpeed216.4.2FieldWeakeningControl

Fig.6-16Constanttorqueandconstantpoweroperation(externalcharacteristics)curves226.4.2FieldWeakeningControl

236.4.2FieldWeakeningControl

24

6.4.2FieldWeakeningControl25Fig.6-18ConstraintsandprinciplesofPMSMcontrol6.4.2FieldWeakeningControlTheconstanttorquecurve,currentlimitcircle,voltagelimitellipse,MTPA,andMTPVanalyzedabovecanbedisplayedonthecurrentphaseplane.266.4.2FieldWeakeningControl

Fig.6-19FieldWeakeningControlandOptimalControlofStatorCurrentFig.6-16Constanttorqueandconstantpoweroperation(externalcharacteristics)curve276.4.3TheBasicPrincipleofPMSMBrakingFig.6-20PMSMvectordiagramunderfieldorientedcontrola)Driving

286.4.3TheBasicPrincipleofPMSMBrakingb)Regenerationbraking

c)EnergyconsumptionbrakingFig.6-20PMSMvectordiagramunderfieldorientedcontrol

Chapter6

SpaceVectorAnalysisofPermanentMagnetSynchronousMotors車用驅(qū)動(dòng)電機(jī)原理與控制基礎(chǔ)(第2版)PrincipleandControlFundamentalsofVehicleDriveMotorsChapter7

SpaceVectorDescriptionandFieldOrientedControlofInductionMotors車用驅(qū)動(dòng)電機(jī)原理與控制基礎(chǔ)(第2版)PrincipleandControlFundamentalsofVehicleDriveMotorsa)

squirrelcagewindingb)

RotorstructureofwoundwindingFig.7-1Schematicdiagramofrotorstructureofinductionmotor317.1TheRotorStructureandWorkingPrincipleofIMThestatorstructureoftheinductionmotorisbasicallythesameasthatofthesynchronousmotor.Themaindifferenceliesintherotorstructureandthegenerationprincipleoftherotormagneticfield.Therotorstructureofinductionmotor(IM)mainlyincludestwoparts:rotorironcoreandrotorwinding.Thecommonwindingtypesaresquirrelcagetypeandwoundtype.1.SquirrelcagewindingAsquirrel-cagewindingisaself-closingshort-circuitwinding.Itconsistsofabarinsertedintoeachrotorslotandannularendringsatbothends.Iftheironcoreisremoved,theentirewindingislikea“circularsquirrelcage”.2.WoundwindingTheslotofthewoundrotorisembeddedwithathree-phasewindingcomposedofinsulatedwires.Thethreeoutgoingwiresofthewindingareconnectedtothethreecollectorringsmountedontheshaft,andareconnectedtotheexternalcircuitthroughbrushes.Thefeatureofthisrotoristhatanexternaladjustableresistorcanbeconnectedtotherotorwindingtoimprovethestartingandspeedregulationperformanceofthemotor.327.1.2WorkingPrincipleofThree-phaseIMThestatorisathree-phasesymmetricalwinding,anditsstructureisthesameasthatofathree-phasesynchronousmotor.Atthesametime,therotorisalsoequivalenttothree-phasesymmetricalwindingsa-x,b-yandc-z,andtheyareshort-circuited,thusformingabasicthree-phaseinductionmotor

Fig.7-2aTheequivalentphysicalmodelofthe

three-phaseinductionmotor33

7.1.2WorkingPrincipleofThree-phaseIM347.1.3Stator,RotorandMagneticFieldSynchronousCoordinateSystems

Table7-1Therepresentationandtransformationrelationshipsofcurrentvectorsinthreecoordinatesystems357.2VectorsEquationofIM7.2.1Stator/RotorInductanceandFluxLinkageofIM

Fig.7-3Theequivalentfour-coilprototypemotormodelofIM367.2.1Stator/RotorInductanceandFluxLinkageofIMFig.7-4Thestator/rotorcurrent,andrespectivefluxlinkagevectorsofthethree-phaseIM377.2.2SpaceVectorEquationsunderStationaryReferenceFrame

38

7.2.3SpaceVectorEquationsunderRotor-fixedabcReferenceFrame397.2.4SpaceVectorEquationunderArbitraryMagneticFieldSynchronousRotatingMTReferenceFrame

40

7.2.4SpaceVectorEquationunderArbitraryMagneticFieldSynchronousRotatingMTReferenceFrame41

7.2.4SpaceVectorEquationunderArbitraryMagneticFieldSynchronousRotatingMTReferenceFrame42

7.2.4SpaceVectorEquationunderArbitraryMagneticFieldSynchronousRotatingMTReferenceFrame43Fig.7-5Steady-statevectordiagramofthethree-phaseIM7.2.4SpaceVectorEquationunderArbitraryMagneticFieldSynchronousRotatingMTReferenceFrame447.3RotorMagneticFieldEstablishmentProcessandItsOrientationFig.7-6Therotormagneticfieldisrepresentedasthecombinationoftheair-gapmagneticfieldandtherotorleakagemagneticfield

457.3RotorMagneticFieldEstablishmentProcessandItsOrientationFig.7-6Therotormagneticfieldisrepresentedasthecombinationoftheair-gapmagneticfieldandtherotorleakagemagneticfield

467.3.1Rotort-axisMagnetomotiveForceInducedbyMotionalElectromotiveForceFig.7-7Therotorequivalentcurrentvectorwhentherotormagneticfieldamplitudeisconstanta)Rotormagnetomotiveforcevectorformedbyrotorbarcurrent

b)Thespatialdistributionofmotionalelectromotiveforceandcurrentmagnitudeintheconductor47Fig.7-8

Therotorequivalentcurrentvectorwhentheamplitudeoftherotormagneticfieldisconstanta)Themagnetomotiveforcevectorsoftherotorcoilcurrentsandtheirsynthesisb)Theequivalentexcitationcurrentatt-axis

7.3.1Rotort-axisMagnetomotiveForceInducedbyMotionalElectromotiveForce

48Fig.7-9RotorcurrentvectorwhenrotormagneticfieldamplitudechangesDuringthedynamicoperationofthemotor,iftheamplitudeoftherotormagneticfieldchanges,transformerelectromotiveforcewillbeinducedineachrotorbar.AtthemomentshowninFig.7-9a,iftheamplitudeoftherotormagneticfieldisincreasing,accordingtoLenz'slaw,theelectromotiveforceineachbarwillbeshowninFig.7-9a.

7.3.1Rotorm-axisMagnetomotiveForceInducedbyInducedElectromotiveForcea)Rotorcurrentandrotormagnetomotiveforceb)Spatialdistributionoftransformerelectromotiveforceandcurrentmagnitudeinthebar497.3.3DefinitionandCharacteristicsofRotorMagneticField-OrientedCoordinateSystemFig.7-11RotorcagewindingisequivalenttoMTaxiscoilFig.7-12MagneticfieldorientedMTcoordinatesystem

507.3.4StatorandRotorFluxLinkageEquation

517.3.6StatorandRotorVoltageEquations

527.3.6StatorandRotorCurrentEquations

537.3.6StatorandRotorCurrentEquations

547.3.6StatorandRotorCurrentEquationsFig.7-13Vectordiagramofmagneticfluxandcurrentforathree-phaseinductionmotorafterfieldorientation

a)Dynamicvectordiagramoffluxlinkageandcurrent557.3.7TorqueEquation

56

7.3.7TorqueEquation577.3.7TorqueEquation

587.4PrincipleofVectorControlbasedonCurrentPhasePlane7.4.1ControlConstraints

597.4.1ControlConstraintsonCurrentPhasePlane

607.4.1ControlConstraintsonCurrentPhasePlane

Fig.7-18Thediagramsofcontrolconstraintsandcontrollawforinductionmotor617.4.1ControlConstraintsonCurrentPhasePlane

627.4.2FieldWeakeningControlProcessonCurrentPhasePlaneFig.7-19OperatingregionoftheinductionmotoracrossthefullspeedrangeThefieldweakeningcontroloftheinductionmotorshouldaimforthemaximumtorqueoutput,takingintoaccounttheconstraintsofvoltageandcurrenttoallocatethecurrentreasonably.Duetothesevoltageandcurrentconstraints,theeffectivetorqueoutputoftheinductionmotordecreasesinthefieldweakeningregion.Tofullyutilizethemaximumtorquecapabilityofthedrivesystemundervoltageandcurrentlimitations,themostrationalutilizationofvoltageandcurrentisrequired.Theoperatingspeedrangeofaninductionmotorcanbedividedintothreeregions:constanttorqueregion,constantpowerregion,andconstantvoltager

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論