版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
2025屆江蘇省連云港市東海高級中學高一上數(shù)學期末教學質(zhì)量檢測模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.定義:對于一個定義域為的函數(shù),若存在兩條距離為的直線和,使得時,恒有,則稱在內(nèi)有一個寬度為的通道.下列函數(shù):①;②;③;④.其中有一個寬度為2的通道的函數(shù)的序號為A.①② B.②③C.②④ D.②③④2.已知函數(shù),,的零點分別,,,則,,的大小關(guān)系為()A. B.C. D.3.設兩條直線方程分別為,,已知,是方程的兩個實根,且,則這兩條直線之間的距離的最大值和最小值分別是A. B.C. D.4.已知是非零向量且滿足,,則與的夾角是()A. B.C. D.5.若,則化簡=()A. B.C. D.6.把長為的細鐵絲截成兩段,各自圍成一個正三角形,那么這兩個正三角形面積之和的最小值是()A. B.C. D.7.若是三角形的一個內(nèi)角,且,則的值是()A. B.C.或 D.不存在8.下列說法正確的是()A.若,,則 B.若a,,則C.若,,則 D.若,則9.設,表示兩條直線,,表示兩個平面,則下列命題正確的是A.若,,則 B.若,,則C.若,,則 D.若,,則10.若實數(shù),滿足,則關(guān)于的函數(shù)圖象的大致形狀是()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.某地為踐行綠水青山就是金山銀山的理念,大力開展植樹造林.假設一片森林原來的面積為畝,計劃每年種植一些樹苗,且森林面積的年增長率相同,當面積是原來的倍時,所用時間是年(1)求森林面積的年增長率;(2)到今年為止,森林面積為原來的倍,則該地已經(jīng)植樹造林多少年?(3)為使森林面積至少達到畝,至少需要植樹造林多少年(精確到整數(shù))?(參考數(shù)據(jù):,)12.過點且與直線垂直的直線方程為___________.13.給出下列命題“①設表示不超過的最大整數(shù),則;②定義:若任意,總有,就稱集合為的“閉集”,已知且為的“閉集”,則這樣的集合共有7個;③已知函數(shù)為奇函數(shù),在區(qū)間上有最大值5,那么在上有最小值.其中正確的命題序號是_________.14.寫出一個同時具有下列性質(zhì)①②③的函數(shù)_________①在R上單調(diào)遞增;②;③15.將函數(shù)圖象上所有的點向右平行移動個單位長度,再把所得各點的橫坐標伸長到原來的2倍(縱坐標不變),所得圖象的函數(shù)解析式為________.16.已知=-5,那么tanα=________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知且,函數(shù).(1)求的定義域;(2)判斷的奇偶性,并用定義證明;(3)求使的取值范圍.18.已知正方體,(1)證明:平面;(2)求異面直線與所成的角19.已知,,且若,求的值;與能否平行,請說明理由20.(1)計算:.(2)化簡:.21.函數(shù)是定義在上的奇函數(shù),且(1)確定的解析式(2)判斷在上的單調(diào)性,并利用函數(shù)單調(diào)性的定義證明;(3)解關(guān)于的不等式
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】②③可由作圖所得,④作圖可知有一個寬度為1的通道,由定義可知比1大的通道都存在.2、A【解析】判斷出三個函數(shù)的單調(diào)性,可求出,,并判斷,進而可得到答案【詳解】因為在上遞增,當時,,所以;因為在上遞增,當時,恒成立,故的零點小于0,即;因為在上遞增,當時,,故,故.故選:A.3、B【解析】兩條直線之間的距離為,選B點睛:求函數(shù)最值,一般通過條件將函數(shù)轉(zhuǎn)化為一元函數(shù),根據(jù)定義域以及函數(shù)單調(diào)性確定函數(shù)最值4、B【解析】利用向量垂直求得,代入夾角公式即可.【詳解】設的夾角為;因為,,所以,則,則故選:B【點睛】向量數(shù)量積的運算主要掌握兩點:一是數(shù)量積的基本公式;二是向量的平方等于向量模的平方.5、D【解析】根據(jù)誘導公式化簡即可得答案.【詳解】解:.故選:D6、D【解析】先得到兩個正三角形面積之和的表達式,再對其求最小值即可.【詳解】設一個正三角形的邊長為,則另一個正三角形的邊長為,設兩個正三角形的面積之和為,則,當時,S取最小值.故選:D7、B【解析】由誘導公式化為,平方求出,結(jié)合已知進一步判斷角范圍,判斷符號,求出,然后開方,進而求出的值,與聯(lián)立,求出,即可求解.【詳解】,平方得,,是三角形的一個內(nèi)角,,,,.故選:B【點睛】本題考查誘導公式化簡,考查同角間的三角函數(shù)關(guān)系求值,要注意,三者關(guān)系,知一求三,屬于中檔題.8、C【解析】結(jié)合特殊值、差比較法確定正確選項.【詳解】A:令,;,,則,,不滿足,故A錯誤;B:a,b異號時,不等式不成立,故B錯誤;C:,,,,即,故C正確;D:令,,不成立,故D錯誤.故選:C9、D【解析】對選項進行一一判斷,選項D為面面垂直判定定理.【詳解】對A,與可能異面,故A錯;對B,可能在平面內(nèi);對C,與平面可能平行,故C錯;對D,面面垂直判定定理,故選D.【點睛】本題考查空間中線、面位置關(guān)系,判斷一個命題為假命題,只要能舉出反例即可.10、B【解析】利用特殊值和,分別得到的值,利用排除法確定答案.【詳解】實數(shù),滿足,當時,,得,所以排除選項C、D,當時,,得,所以排除選項A,故選:B.【點睛】本題考查函數(shù)圖像的識別,屬于簡單題.二、填空題:本大題共6小題,每小題5分,共30分。11、(1);(2)5年;(3)17年.【解析】(1)設森林面積的年增長率為,則,解出,即可求解;(2)設該地已經(jīng)植樹造林年,則,解出的值,即可求解;(3)設為使森林面積至少達到畝,至少需要植樹造林年,則,再結(jié)合對數(shù)函數(shù)的公式,即可求解.【小問1詳解】解:設森林面積的年增長率為,則,解得【小問2詳解】解:設該地已經(jīng)植樹造林年,則,,解得,故該地已經(jīng)植樹造林5年【小問3詳解】解:設為使森林面積至少達到畝,至少需要植樹造林年,則,,,,即取17,故為使森林面積至少達到畝,至少需要植樹造林17年12、【解析】利用垂直關(guān)系設出直線方程,待定系數(shù)法求出,從而求出答案.【詳解】設與直線垂直的直線為,將代入方程,,解得:,則與直線垂直的直線為.故答案為:13、①②【解析】對于①,如果,則,也就是,所以,進一步計算可以得到該和為,故①正確;對于②,我們把分成四組:,由題設可知不是“閉集”中的元素,其余三組元素中的每組元素必定在“閉集”中同時出現(xiàn)或同時不出現(xiàn),故所求的“閉集”的個數(shù)為,故②正確;對于③,因為在上的最大值為,故在上的最大值為,所以在上的最小值為,在上的最小值為,故③錯.綜上,填①②點睛:(1)根據(jù)可以得到,因此,這樣的共有,它們的和為,依據(jù)這個規(guī)律可以寫出和并計算該和(2)根據(jù)閉集的要求,中每組元素都是同時出現(xiàn)在閉集中或者同時不出現(xiàn)在閉集中,故可以根據(jù)子集的個數(shù)公式來計算(3)注意把非奇非偶函數(shù)轉(zhuǎn)化為奇函數(shù)或偶函數(shù)來討論14、(答案不唯一,形如均可)【解析】由指數(shù)函數(shù)的性質(zhì)以及運算得出.【詳解】對函數(shù),因在R上單調(diào)遞增,所以在R上單調(diào)遞增;,.故答案為:(答案不唯一,形如均可)15、.【解析】由題意利用函數(shù)的圖象變換規(guī)律,即可得出結(jié)論.【詳解】將函數(shù)圖象上所有的點向右平行移動個單位長度,可得函數(shù)為,再把所得各點的橫坐標伸長到原來的2倍(縱坐標不變),可得函數(shù)為.故答案為:.16、-【解析】由已知得=-5,化簡即得解.【詳解】易知cosα≠0,由=-5,得=-5,解得tanα=-.故答案為:-【點睛】本題主要考查同角的商數(shù)關(guān)系,意在考查學生對這些知識的理解掌握水平.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2)函數(shù)是偶函數(shù),詳見解析;(3)當時,;當時,或.【解析】(1)根據(jù)對數(shù)的真數(shù)為正數(shù)列式可解得結(jié)果;(2)函數(shù)是偶函數(shù),根據(jù)偶函數(shù)的定義證明即可;(3)不等式化為后,分類討論底數(shù),根據(jù)對數(shù)函數(shù)的單調(diào)性可解得結(jié)果.【小問1詳解】要使函數(shù)數(shù)有意義,則必有,解得,所以函數(shù)的定義域是;【小問2詳解】函數(shù)是偶函數(shù),證明如下:∵,,又∴函數(shù)是偶函數(shù);【小問3詳解】使,即當時,有,,當時,有,解得或.綜上所述:當時,;當時,或.18、(1)證明見解析;(2)【解析】(1)證明,再根據(jù)線面平行的判定定理即可證明結(jié)論;(2)即為異面直線與所成的角,求出即可【詳解】(1)證:在正方體中,,且,∴四邊形為平行四邊形,∴,又∵平面,平面;∴平面;(2)解:∵,∴即為異面直線與所成的角,設正方體的邊長為,則易得,∴為等邊三角形,∴,故異面直線與所成的角為【點睛】本題主要考查線面平行的判定與異面直線所成的角,屬于基礎題19、(1);(2)不能平行.【解析】推導出,從而,,進而,由此能求出假設與平行,則推導出,,由,得,不能成立,從而假設不成立,故與不能平行【詳解】,,且.,,,,,.假設與平行,則,則,,,,不能成立,故假設不成立,故與不能平行【點睛】本題考查向量的模的求法,考查向量能否平行的判斷,考查向量垂直、向量平行的性質(zhì)等基礎知識,考查運算求解能力,是基礎題.20、(1);(2)【解析】(1)根據(jù)分數(shù)指數(shù)冪及對數(shù)的運算法則計算可得;(2)利用誘導公式及特殊值的三角函數(shù)值計算可得;【詳解】解:(1)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024版廈門住宅租賃協(xié)議樣本版B版
- 個人經(jīng)營企業(yè)員工食堂協(xié)議模板
- 2024版電商企業(yè)財務外包協(xié)議3篇
- 2024版共享工作人員協(xié)議范本
- 湘潭大學興湘學院《化學導論》2023-2024學年第一學期期末試卷
- 西安電子科技大學長安學院《建筑制圖一》2023-2024學年第一學期期末試卷
- 2024年物流倉儲聯(lián)合投資合同3篇
- 2024版出租車車輛買賣合同3篇
- 二零二五版北碚集資房產(chǎn)權(quán)轉(zhuǎn)讓合同(含房屋鑒定)3篇
- 二零二五年度集裝箱板房租賃及體育賽事服務合同3篇
- 2025年1月 浙江首考英語試卷
- 資本金管理制度文件模板
- 2025年急診科護理工作計劃
- 高中家長會 高二寒假線上家長會課件
- 2024-2025學年山東省聊城市高一上學期期末數(shù)學教學質(zhì)量檢測試題(附解析)
- 違規(guī)行為與處罰管理制度
- 個人教師述職報告錦集10篇
- 四川省等八省2025年普通高中學業(yè)水平選擇性考試適應性演練歷史試題(含答案)
- 《內(nèi)部培訓師培訓》課件
- 《雷達原理》課件-3.3.3教學課件:相控陣雷達
- 紅色中國風蛇年年會邀請函
評論
0/150
提交評論