版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
四川省瀘州市瀘縣第二中學2025屆數(shù)學高二上期末經(jīng)典試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知命題:,命題:則是的()條件A.充分不必要 B.必要不充分C.充分必要 D.既不充分也不必要2.設,是兩個不同的平面,是直線且.“”是“”的A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件3.已知橢圓的一個焦點坐標是,則()A.5 B.2C.1 D.4.設變量滿足約束條件:,則的最小值()A. B.C. D.5.在中,、、所對的邊分別為、、,若,,,則()A. B.C. D.6.已知點在橢圓上,與關(guān)于原點對稱,,交軸于點,為坐標原點,,則橢圓離心率為()A. B.C. D.7.在中,角、、的對邊分別是、、,若.則的大小為()A. B.C. D.8.魯班鎖運用了中國古代建筑中首創(chuàng)的榫卯結(jié)構(gòu),相傳由春秋時代各國工匠魯班所作,是由六根內(nèi)部有槽的長方形木條,按橫豎立三方向各兩根凹凸相對咬合一起,形成的一個內(nèi)部卯榫的結(jié)構(gòu)體.魯班鎖的種類各式各樣,千奇百怪.其中以最常見的六根和九根的魯班鎖最為著名.下圖1是經(jīng)典的六根魯班鎖及六個構(gòu)件的圖片,下圖2是其中的一個構(gòu)件的三視圖(圖中單位:mm),則此構(gòu)件的表面積為()A. B.C. D.9.設橢圓C:的右焦點為F,過原點O的動直線l與橢圓C交于A,B兩點,那么的周長的取值范圍為()A. B.C. D.10.若等軸雙曲線C過點,則雙曲線C的頂點到其漸近線的距離為()A.1 B.C. D.211.已知,,點為圓上任意一點,設,則的最大值為()A. B.C. D.12.年月日我國公布了第七次全國人口普查結(jié)果.自新中國成立以來,我國共進行了七次全國人口普查,如圖為我國歷次全國人口普查人口性別構(gòu)成及總?cè)丝谛詣e比(以女性為,男性對女性的比例)統(tǒng)計圖,則下列說法錯誤的是()A.第五次全國人口普查時,我國總?cè)丝跀?shù)已經(jīng)突破億B.第一次全國人口普查時,我國總?cè)丝谛詣e比最高C.我國歷次全國人口普查總?cè)丝跀?shù)呈遞增趨勢D.我國歷次全國人口普查總?cè)丝谛詣e比呈遞減趨勢二、填空題:本題共4小題,每小題5分,共20分。13.橢圓的長軸長為______14.已知函數(shù),,若,,使得,則實數(shù)a的取值范圍是______15.若p:存在,使是真命題,則實數(shù)a的取值范圍是______16.設公差的等差數(shù)列的前項和為,已知,且,,成等比數(shù)列,則的最小值為______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在中,角A,B,C所對的邊分別為a,b,c,且.(1)求角A的大??;(2)若,且的面積為,求的周長.18.(12分)在正方體中,,,分別是,,的中點.(1)證明:平面平面;(2)求直線與所成角的正切值.19.(12分)在平面直角坐標系中,過點且傾斜角為的直線與曲線(為參數(shù))交于兩點.(1)將曲線的參數(shù)方程轉(zhuǎn)化為普通方程;(2)求長.20.(12分)已知展開式中,第三項的系數(shù)與第四項的系數(shù)相等(1)求n的值;(2)求展開式中有理項的系數(shù)之和(用數(shù)字作答)21.(12分)已知等差數(shù)列滿足,,的前項和為.(1)求及;(2)令,求數(shù)列的前項和.22.(10分)已知數(shù)列是正項數(shù)列,,且.(1)求數(shù)列的通項公式;(2)設,數(shù)列的前項和為,若對恒成立,求實數(shù)的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】利用充分條件和必要條件的定義判斷.【詳解】解:若,則或,即或,所以是的必要不充分條件故選:B2、B【解析】,得不到,因為可能相交,只要和的交線平行即可得到;,,∴和沒有公共點,∴,即能得到;∴“”是“”的必要不充分條件.故選B考點:必要條件、充分條件與充要條件的判斷.【方法點晴】考查線面平行的定義,線面平行的判定定理,面面平行的定義,面面平行的判定定理,以及充分條件、必要條件,及必要不充分條件的概念,屬于基礎題;并得不到,根據(jù)面面平行的判定定理,只有內(nèi)的兩相交直線都平行于,而,并且,顯然能得到,這樣即可找出正確選項.3、C【解析】根據(jù)題意橢圓焦點在軸上,且,將橢圓方程化為標準形式,從而得出,得出答案.【詳解】由焦點坐標是,則橢圓焦點在軸上,且將橢圓化為,則由,焦點坐標是,則,解得故選:C4、D【解析】如圖作出可行域,知可行域的頂點是A(-2,2)、B()及C(-2,-2),平移,當經(jīng)過A時,的最小值為-8,故選D.5、B【解析】利用正弦定理,以及大邊對大角,結(jié)合正弦定理,即可求得.【詳解】根據(jù)題意,由正弦定理,可得:,解得,故可得或,由,可得,故故選:B.6、B【解析】由,得到,結(jié)合,得到,進而求得,得出,結(jié)合離心率的定義,即可求解.【詳解】設,則,由,可得,所以,因為,可得,又由,兩式相減得,即,即,又因為,所以,即又由,所以,解得.故選:B.7、B【解析】利用余弦定理結(jié)合角的范圍可求得角的值,再利用三角形的內(nèi)角和定理可求得的值.【詳解】因為,則,則,由余弦定理可得,因為,則,故.故選:B.8、B【解析】由三視圖可知,該構(gòu)件是長為100,寬為20,高為20的長方體的上面的中間部分去掉一個長為40,寬為20,高為10的小長方體的一個幾何體,進而求出表面積即可.【詳解】由三視圖可知,該構(gòu)件是長為100,寬為20,高為20的長方體的上面的中間部分去掉一個長為40,寬為20,高為10的小長方體的一個幾何體,如下圖所示,其表面積為:.故選:B.【點睛】本題考查幾何體的表面積的求法,考查三視圖,考查學生的空間想象能力與計算求解能力,屬于中檔題.9、A【解析】根據(jù)橢圓的對稱性橢圓的定義可得,結(jié)合的范圍求的周長的取值范圍.【詳解】的周長,又因為A,B兩點為過原點O的動直線l與橢圓C的交點,所以A,B兩點關(guān)于原點對稱,橢圓C的左焦點為,則,所以,又因為三點不共線,所以,所以的周長的取值范圍為,故選:A.10、A【解析】先求出雙曲線C的標準方程,再求頂點到其漸近線的距離.【詳解】設等軸雙曲線C的標準方程為,因為點在雙曲線上,所以,解得,所以雙曲線C的標準方程為,故上頂點到其一條漸近線的距離為.故選:A11、C【解析】根據(jù)題意可設,再根據(jù),求出,再利用三角函數(shù)的性質(zhì)即可得出答案.【詳解】解:由點為圓上任意一點,可設,則,由,得,所以,則,則,其中,所以當時,取得最大值為22.故選:C.12、D【解析】根據(jù)統(tǒng)計圖判斷各選項的對錯.【詳解】由統(tǒng)計圖第五次全國人口普查時,男性和女性人口數(shù)都超過6億,故總?cè)丝跀?shù)超過12億,A對,由統(tǒng)計圖,第一次全國人口普查時,我國總?cè)丝谛詣e比為107.56,超過余下幾次普查的人口的性別比,B對,由統(tǒng)計圖可知,我國歷次全國人口普查總?cè)丝跀?shù)呈遞增趨勢,C對,由統(tǒng)計圖可知,第二次,第三次,第四次,第五次時總?cè)丝谛詣e比呈遞增趨勢,D錯,D錯,故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、4【解析】把橢圓方程化成標準形式直接計算作答.【詳解】橢圓方程化為:,令橢圓長半軸長為a,則,解得,所以橢圓的長軸長為4.故答案為:414、【解析】先求出兩函數(shù)在上的值域,再由已知條件可得,且,列不等式組可求得結(jié)果【詳解】由,得,當時,,所以在上單調(diào)遞減,所以,即,由,得,當時,,所以在上單調(diào)遞增,所以,即,因為,,使得,所以,解得,故答案為:15、【解析】將問題分離參數(shù)得到存在,使成立,可得結(jié)論.【詳解】存在,使,即存在,使,所以故答案為:16、##0.4【解析】應用等比中項的性質(zhì)及等差數(shù)列通項公式求公差d,進而寫出等差數(shù)列的通項公式、前n項和公式,再求目標式的最小值.【詳解】由題設,,則,整理得,又,解得,故,,所以,故當時目標式有最小值為.故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)由,根據(jù)正弦定理化簡得,利用余弦定理求得,即可求解;(2)由的面積,求得,結(jié)合余弦定理,求得,即可求解.【小問1詳解】解:因為,所以.由正弦定理得,可得,所以,因為,所以.【小問2詳解】解:由的面積,所以.由余弦定理得,所以,所以,所以的周長為.18、(1)證明見解析(2)【解析】(1)分別證明∥平面,∥平面,最后利用面面平行的判定定理證明平面∥平面即可;(2)由∥得即為直線與所成角,在直角△即可求解.【小問1詳解】∵∥且EN平面MNE,BC平面MNE,∴BC∥平面MNE,又∵∥且EM平面MNE,平面MNE,∴∥平面MNE又∵,∴平面∥平面,【小問2詳解】由(1)得∥,∴為直線MN與所成的角,設正方體的棱長為a,在△中,,,∴.19、(1);(2).【解析】(1)利用公式直接將橢圓的參數(shù)方程轉(zhuǎn)化為普通方程即可.(2)首先求出直線的參數(shù)方程,代入橢圓的普通方程得到,再利用直線參數(shù)方程的幾何意義求弦長即可.【詳解】(1)因為曲線(為參數(shù)),所以曲線的普通方程為:.(2)由題知:直線的參數(shù)方程為(為參數(shù)),將直線的參數(shù)方程代入,得.,.所以.20、(1)8;(2).【解析】(1)由題設可得,進而寫出第三、四項的系數(shù),結(jié)合已知列方程求n值即可.(2)由(1)有,確定有理項的對應k值,進而求得對應項的系數(shù),即可得結(jié)果.小問1詳解】由題意,二項式展開式的通項公式所以第三項系數(shù)為,第四項系數(shù)為,由,解得,即n的值為8【小問2詳解】由(1)知:當,3,6時,對應的是有理項當時,展開式中對應的有理項為;當時,展開式中對應的有理項為;當時,展開式中對應的有理項為;故展開式中有理項的系數(shù)之和為21、(1),;(2).【解析】(1)根據(jù)等差數(shù)列的通項公式及已知條件,,解方程組可得,,進而可得等差數(shù)列的通項公式,再利用等差數(shù)列的前項和公式可得;(2)將數(shù)列的通項公式代入可得的通項公式,利用錯位相減法求和可得結(jié)果.【詳解】(1)設等差數(shù)列的首項為,公差為,由于,,所以,,解得,,所以,;(2)因為,所以,故,,兩式相減得,所以.【點睛】本題的核心是考查錯位相減求和.一般地,如果數(shù)列{an}是等差數(shù)列,{bn}是等比數(shù)列,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 一年級上冊20以內(nèi)的所有加減法計算題
- 廣東省中山市2024年中考一模數(shù)學試卷含答案
- 荊州學院《非線性系統(tǒng)理論與設計》2023-2024學年第一學期期末試卷
- 遼寧城市建設職業(yè)技術(shù)學院《互換性與技術(shù)測量D》2023-2024學年第一學期期末試卷
- 黃岡職業(yè)技術(shù)學院《材料科學基礎B(二)》2023-2024學年第一學期期末試卷
- 【物理】第九章壓強 固體壓強 練習 2024-2025學年人教版物理八年級下學期
- 黑龍江冰雪體育職業(yè)學院《獸醫(yī)寄生蟲病學》2023-2024學年第一學期期末試卷
- 重慶三峽職業(yè)學院《標志與符號設計》2023-2024學年第一學期期末試卷
- 重慶城市管理職業(yè)學院《粉體科學與工程實驗》2023-2024學年第一學期期末試卷
- 浙江育英職業(yè)技術(shù)學院《衛(wèi)生微生物學》2023-2024學年第一學期期末試卷
- 廣東省廣州市2024年中考數(shù)學真題試卷(含答案)
- 內(nèi)審檢查表完整版本
- 初二數(shù)學幾何試題(含答案)
- 人教部編版七年級語文上冊《閱讀綜合實踐》示范課教學設計
- 孤殘兒童護理員技能鑒定考試題庫(含答案)
- (正式版)QC∕T 1206.1-2024 電動汽車動力蓄電池熱管理系統(tǒng) 第1部分:通 用要求
- 《煤礦地質(zhì)工作細則》礦安﹝2024﹞192號
- 消防控制室值班服務人員培訓方案
- 《貴州旅游介紹》課件2
- 2024年中職單招(護理)專業(yè)綜合知識考試題庫(含答案)
- 無人機應用平臺實施方案
評論
0/150
提交評論