版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
福建省泉州市泉港六中2025屆高一上數(shù)學(xué)期末經(jīng)典試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.每天,隨著清晨第一縷陽光升起,北京天安門廣場都會舉行莊嚴(yán)肅穆的升旗儀式,每天升國旗的時間隨著日出時間的改變而改變,下表給出了2020年1月至12月,每個月第一天北京天安門廣場舉行升旗禮的時間:1月2月3月4月5月6月7月8月9月10月11月12月7:367:236:485:595:154:484:495:125:416:106:427:16若據(jù)此以月份(x)為橫軸、時間(y)為縱軸,畫出散點圖,并用曲線去擬合這些數(shù)據(jù),則適合模擬的函數(shù)模型是()A. B.且a≠1)C. D.且a≠1)2.已知,且,則的最小值為()A.3 B.4C.5 D.63.已知函數(shù)是定義在R上的偶函數(shù),且在上是單調(diào)遞減的,設(shè),,,則a,b,c的大小關(guān)系為()A. B.C. D.4.定義在上的函數(shù)滿足下列三個條件:①;②對任意,都有;③的圖像關(guān)于軸對稱.則下列結(jié)論中正確的是AB.C.D.5.若一元二次不等式的解集為,則的值為()A. B.0C. D.26.函數(shù)y=log2的定義域A.(,3) B.(,+∞)C.(,3) D.[,3]7.下列函數(shù)中為偶函數(shù)的是()A. B.C. D.8.函數(shù)的單調(diào)遞增區(qū)間是A. B.C. D.9.函數(shù)的一個零點落在下列哪個區(qū)間()A.(0,1) B.(1,2)C.(2,3) D.(3,4)10.已知向量,,,則A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知在區(qū)間上單調(diào)遞減,則實數(shù)的取值范圍是____________.12.函數(shù)最小正周期是________________13.命題“”的否定是______.14.已知定義在上的奇函數(shù)滿足,且當(dāng)時,,則__________.15.函數(shù)滿足,且在區(qū)間上,則的值為____16.已知,則的值為______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù),(1)求的單調(diào)遞增區(qū)間;(2)令函數(shù),再從條件①、條件②這兩個條件中選擇一個作為已知,求在區(qū)間上的最大值及取得最大值時的值條件①:;條件②:注:如果選擇條件①和條件②分別解答,按第一個解答計分18.已知函數(shù)f(x)=(1)判斷函數(shù)f(x)的奇偶性;(2)判斷并證明函數(shù)f(x)的單調(diào)性;(3)解不等式:f(x2-2x)+f(3x-2)<0;19.已知集合(1)當(dāng)時,求;(2)若,求實數(shù)的取值范圍.20.已知函數(shù)(Ⅰ)求的最小正周期及對稱軸方程;(Ⅱ)當(dāng)時,求函數(shù)的最大值、最小值,并分別求出使該函數(shù)取得最大值、最小值時的自變量的值.21.已知函數(shù)是奇函數(shù),是偶函數(shù)(1)求的值;(2)設(shè),若對任意恒成立,求實數(shù)a的取值范圍
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】畫出散點圖,根據(jù)圖形即可判斷.【詳解】畫出散點圖如下,則根據(jù)散點圖可知,可用正弦型曲線擬合這些數(shù)據(jù),故適合.故選:C.2、C【解析】依題意可得,則,再利用基本不等式計算可得;【詳解】解:因為且,所以,所以當(dāng)且僅當(dāng),即,時取等號;所以的最小值為故選:C【點睛】利用基本不等式求最值時,要注意其必須滿足的三個條件:(1)“一正二定三相等”“一正”就是各項必須為正數(shù);(2)“二定”就是要求和的最小值,必須把構(gòu)成和的二項之積轉(zhuǎn)化成定值;要求積的最大值,則必須把構(gòu)成積的因式的和轉(zhuǎn)化成定值;(3)“三相等”是利用基本不等式求最值時,必須驗證等號成立的條件,若不能取等號則這個定值就不是所求的最值,這也是最容易發(fā)生錯誤的地方3、A【解析】先判斷出上單調(diào)遞增,由,即可得到答案.【詳解】因為函數(shù)是定義在R上的偶函數(shù),所以的圖像關(guān)于y軸對稱,且.又在上是單調(diào)遞減的,所以在上單調(diào)遞增.因為,,所以:,所以,即.故選:A4、D【解析】先由,得函數(shù)周期為6,得到f(7)=f(1);再利用y=f(x+3)的圖象關(guān)于y軸對稱得到y(tǒng)=f(x)的圖象關(guān)于x=3軸對稱,進(jìn)而得到f(1)=f(5);最后利用條件(2)得出結(jié)論因為,所以;即函數(shù)周期為6,故;又因為的圖象關(guān)于y軸對稱,所以的圖象關(guān)于x=3對稱,所以;又對任意,都有;所以故選:D考點:函數(shù)的奇偶性和單調(diào)性;函數(shù)的周期性.5、C【解析】由不等式與方程的關(guān)系轉(zhuǎn)化為,從而解得【詳解】解:∵不等式kx2﹣2x+k<0的解集為{x|x≠m},∴,解得,k=﹣1,m=﹣1,故m+k=﹣2,故選:C6、A【解析】由真數(shù)大于0,求解對分式不等式得答案;【詳解】函數(shù)y=log2的定義域需滿足故選A.【點睛】】本題考查函數(shù)的定義域及其求法,考查分式不等式的解法,是中檔題7、B【解析】利用函數(shù)奇偶性的定義可判斷A、B、C選項中各函數(shù)的奇偶性,利用特殊值法可判斷D選項中函數(shù)的奇偶性.【詳解】對于A選項,令,該函數(shù)的定義域為,,所以,函數(shù)為奇函數(shù);對于B選項,令,該函數(shù)的定義域為,,所以,函數(shù)為偶函數(shù);對于C選項,函數(shù)的定義域為,則函數(shù)為非奇非偶函數(shù);對于D選項,令,則,,且,所以,函數(shù)為非奇非偶函數(shù).故選:B.【點睛】本題考查函數(shù)奇偶性的判斷,考查函數(shù)奇偶性定義的應(yīng)用,考查推理能力,屬于基礎(chǔ)題.8、D【解析】,選D.9、B【解析】求出、,由及零點存在定理即可判斷.【詳解】,,,則函數(shù)的一個零點落在區(qū)間上.故選:B【點睛】本題考查零點存在定理,屬于基礎(chǔ)題.10、D【解析】A項:利用向量的坐標(biāo)運(yùn)算以及向量共線的等價條件即可判斷.B項:利用向量模的公式即可判斷.C項:利用向量的坐標(biāo)運(yùn)算求出數(shù)量積即可比較大小.D項:利用向量加法的坐標(biāo)運(yùn)算即可判斷.【詳解】A選項:因為,,所以與不共線.B選項:,,顯然,不正確.C選項:因為,所以,不正確;D選項:因為,所以,正確;答案為D.【點睛】主要考查向量加、減、數(shù)乘、數(shù)量積的坐標(biāo)運(yùn)算,還有向量模的公式以及向量共線的等價條件的運(yùn)用.屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】根據(jù)復(fù)合函數(shù)單調(diào)性的判斷方法,結(jié)合對數(shù)函數(shù)的定義域,即可求得的取值范圍.【詳解】在區(qū)間上單調(diào)遞減由對數(shù)部分為單調(diào)遞減,且整個函數(shù)單調(diào)遞減可知在上單調(diào)遞增,且滿足所以,解不等式組可得即滿足條件的取值范圍為故答案為:【點睛】本題考查了復(fù)合函數(shù)單調(diào)性的應(yīng)用,二次函數(shù)的單調(diào)性,對數(shù)函數(shù)的性質(zhì),屬于中檔題.12、【解析】根據(jù)三角函數(shù)周期計算公式得出結(jié)果.【詳解】函數(shù)的最小正周期是故答案為:13、【解析】根據(jù)全稱命題的否定是特稱命題,寫出結(jié)論.【詳解】原命題是全稱命題,故其否定是特稱命題,所以原命題的否定是“”.【點睛】本小題主要考查全稱命題的否定是特稱命題,除了形式上的否定外,還要注意否定結(jié)論,屬于基礎(chǔ)題.14、##【解析】先求得是周期為的周期函數(shù),然后結(jié)合周期性、奇偶性求得.【詳解】因為函數(shù)為上的奇函數(shù),所以,故,函數(shù)是周期為4的周期函數(shù).當(dāng)時,,則.故答案為:15、【解析】分析:先根據(jù)函數(shù)周期將自變量轉(zhuǎn)化到已知區(qū)間,代入對應(yīng)函數(shù)解析式求值,再代入對應(yīng)函數(shù)解析式求結(jié)果.詳解:由得函數(shù)的周期為4,所以因此點睛:(1)求分段函數(shù)的函數(shù)值,要先確定要求值的自變量屬于哪一段區(qū)間,然后代入該段的解析式求值,當(dāng)出現(xiàn)的形式時,應(yīng)從內(nèi)到外依次求值.(2)求某條件下自變量的值,先假設(shè)所求的值在分段函數(shù)定義區(qū)間的各段上,然后求出相應(yīng)自變量的值,切記代入檢驗,看所求的自變量的值是否滿足相應(yīng)段自變量的取值范圍.16、【解析】用誘導(dǎo)公式計算【詳解】,,故答案為:三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),(2)答案不唯一,具體見解析【解析】(1)根據(jù)正弦函數(shù)的單調(diào)增區(qū)間建立不等式求解即可得出;(2)選①代入,化簡,令,轉(zhuǎn)化為二次函數(shù)求值域即可,選擇條件②代入化簡,令,根據(jù)正弦函數(shù)的圖象與性質(zhì)求最值即可求解.【小問1詳解】函數(shù)的單調(diào)增區(qū)間為()由,,解得,,所以的單調(diào)增區(qū)間為,【小問2詳解】選擇條件①:令,因為,所以所以所以,因為在區(qū)間上單調(diào)遞增,所以當(dāng)時,取得最大值所以當(dāng)時,取得最大值選擇條件②:令,因為,所以所以當(dāng)時,即時,取得最大值18、(1)奇函數(shù)(2)單調(diào)增函數(shù),證明見解析(3)【解析】(1)按照奇函數(shù)的定義判斷即可;(2)按照單調(diào)性的定義判斷證明即可;(3)由單調(diào)遞增解不等式即可.【小問1詳解】易知函數(shù)定義域R,所以函數(shù)為奇函數(shù).【小問2詳解】設(shè)任意x1,x2∈R且x1<x2,f(x1)-f(x2)==∵x1<x2,∴,∴f(x1)<f(x2),∴f(x)是在(-∞,+∞)上是單調(diào)增函數(shù)【小問3詳解】∵f(x2-2x)+f(3x-2)<0,又∵f(x)是定義在R上的奇函數(shù)且在(-∞,+∞)上單調(diào)遞增,∴f(x2-2x)<f(2-3x),∴x2-2x<2-3x,∴-2<x<1.不等式的解集是19、(1);(2).【解析】(1)根據(jù)集合的運(yùn)算法則計算;(2)由得,然后分類和求解【詳解】(1)當(dāng)時,中不等式為,即,∴或,則(2)∵,∴,①當(dāng)時,,即,此時;②當(dāng)時,,即,此時.綜上的取值范圍為.20、(Ⅰ)最小正周期是,對稱軸方程為;(Ⅱ)時,函數(shù)取得最小值,最小值為-2,時,函數(shù)取得最大值,最大值為1.【解析】(Ⅰ)利用二倍角公式及輔助角公式將函數(shù)化簡,再根據(jù)正弦函數(shù)的性質(zhì)求出對稱軸及最小正周期;(Ⅱ)由的取值范圍,求出的取值范圍,再根據(jù)正弦函數(shù)的性質(zhì)計算可得;【詳解】解:(Ⅰ)由與得所以的最小正周期是;令,解得,即函數(shù)的對稱軸為;(Ⅱ)當(dāng)時,所以,當(dāng),即時,函數(shù)取得最小值,最小值為當(dāng),即時,函數(shù)取得最大值,最大值為.21、(1)(2)【解析】(1)利用奇函數(shù)的定
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年鋼模板供應(yīng)與購買合同
- 2024年貨物出口合同2篇
- 2024年新能源汽車樣品組裝與試驗合同范本3篇
- 2024版建筑工程隔離柵勞務(wù)施工合同3篇
- 2025年度新型建筑鋼結(jié)構(gòu)鈑金加工承包協(xié)議3篇
- 2025版井蓋采購合同附智能監(jiān)測系統(tǒng)集成協(xié)議3篇
- 2025年度企業(yè)IT設(shè)備全面維保與系統(tǒng)優(yōu)化協(xié)議2篇
- 2024年音樂節(jié)演出場地租約3篇
- 2025版校車租賃借車及駕駛員考核評估協(xié)議3篇
- 2025鋼網(wǎng)架工程施工合同
- 【川教版】《生命 生態(tài) 安全》四上第13課《預(yù)防凍瘡》課件
- 工廠籌建方案
- UPVC管道安裝施工方法
- 河南省鄭州高新技術(shù)產(chǎn)業(yè)開發(fā)區(qū)2023-2024學(xué)年三年級上學(xué)期1月期末科學(xué)試題
- 女裝行業(yè)退貨率分析
- 計算機(jī)基礎(chǔ)理論-進(jìn)制的概念及換算試題及答案
- 森林草原防火工作培訓(xùn)課件
- 2023年婦科門診總結(jié)及計劃
- 方大重整海航方案
- 河北省秦皇島市昌黎縣2023-2024學(xué)年八年級上學(xué)期期末數(shù)學(xué)試題
- 礦山治理專項研究報告范文
評論
0/150
提交評論