版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022-2023學(xué)年江蘇省南通市啟東市啟東中學(xué)高三年級(jí)4月聯(lián)考數(shù)學(xué)試題注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無(wú)效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知x,,則“”是“”的()A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件2.在一個(gè)數(shù)列中,如果,都有(為常數(shù)),那么這個(gè)數(shù)列叫做等積數(shù)列,叫做這個(gè)數(shù)列的公積.已知數(shù)列是等積數(shù)列,且,,公積為,則()A. B. C. D.3.棱長(zhǎng)為2的正方體內(nèi)有一個(gè)內(nèi)切球,過(guò)正方體中兩條異面直線,的中點(diǎn)作直線,則該直線被球面截在球內(nèi)的線段的長(zhǎng)為()A. B. C. D.14.在三角形中,,,求()A. B. C. D.5.從裝有除顏色外完全相同的3個(gè)白球和個(gè)黑球的布袋中隨機(jī)摸取一球,有放回的摸取5次,設(shè)摸得白球數(shù)為,已知,則A. B. C. D.6.設(shè)集合,,則().A. B.C. D.7.甲乙丙丁四人中,甲說(shuō):我年紀(jì)最大,乙說(shuō):我年紀(jì)最大,丙說(shuō):乙年紀(jì)最大,丁說(shuō):我不是年紀(jì)最大的,若這四人中只有一個(gè)人說(shuō)的是真話,則年紀(jì)最大的是()A.甲 B.乙 C.丙 D.丁8.設(shè)復(fù)數(shù),則=()A.1 B. C. D.9.生活中人們常用“通五經(jīng)貫六藝”形容一個(gè)人才識(shí)技藝過(guò)人,這里的“六藝”其實(shí)源于中國(guó)周朝的貴族教育體系,具體包括“禮、樂(lè)、射、御、書、數(shù)”.為弘揚(yáng)中國(guó)傳統(tǒng)文化,某校在周末學(xué)生業(yè)余興趣活動(dòng)中開展了“六藝”知識(shí)講座,每藝安排一節(jié),連排六節(jié),則滿足“數(shù)”必須排在前兩節(jié),“禮”和“樂(lè)”必須分開安排的概率為()A. B. C. D.10.如圖是一個(gè)幾何體的三視圖,則這個(gè)幾何體的體積為()A. B. C. D.11.已知各項(xiàng)都為正的等差數(shù)列中,,若,,成等比數(shù)列,則()A. B. C. D.12.已知函數(shù),集合,,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè),分別是橢圓C:()的左、右焦點(diǎn),直線l過(guò)交橢圓C于A,B兩點(diǎn),交y軸于E點(diǎn),若滿足,且,則橢圓C的離心率為______.14.如圖,橢圓:的離心率為,F(xiàn)是的右焦點(diǎn),點(diǎn)P是上第一角限內(nèi)任意一點(diǎn),,,若,則的取值范圍是_______.15.已知等比數(shù)列的各項(xiàng)均為正數(shù),,則的值為________.16.函數(shù)在內(nèi)有兩個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍是________.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)在直角坐標(biāo)平面中,已知的頂點(diǎn),,為平面內(nèi)的動(dòng)點(diǎn),且.(1)求動(dòng)點(diǎn)的軌跡的方程;(2)設(shè)過(guò)點(diǎn)且不垂直于軸的直線與交于,兩點(diǎn),點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為,證明:直線過(guò)軸上的定點(diǎn).18.(12分)某校共有學(xué)生2000人,其中男生900人,女生1100人,為了調(diào)查該校學(xué)生每周平均體育鍛煉時(shí)間,采用分層抽樣的方法收集該校100名學(xué)生每周平均體育鍛煉時(shí)間(單位:小時(shí)).(1)應(yīng)抽查男生與女生各多少人?(2)根據(jù)收集100人的樣本數(shù)據(jù),得到學(xué)生每周平均體育鍛煉時(shí)間的頻率分布表:時(shí)間(小時(shí))[0,1](1,2](2,3](3,4](4,5](5,6]頻率0.050.200.300.250.150.05若在樣本數(shù)據(jù)中有38名男學(xué)生平均每周課外體育鍛煉時(shí)間超過(guò)2小時(shí),請(qǐng)完成每周平均體育鍛煉時(shí)間與性別的列聯(lián)表,并判斷是否有95%的把握認(rèn)為“該校學(xué)生的每周平均體育鍛煉時(shí)間與性別有關(guān)”?男生女生總計(jì)每周平均體育鍛煉時(shí)間不超過(guò)2小時(shí)每周平均體育鍛煉時(shí)間超過(guò)2小時(shí)總計(jì)附:K2.P(K2≥k0)0.1000.0500.0100.0052.7063.8416.6357.87919.(12分)已知橢圓的短軸長(zhǎng)為,左右焦點(diǎn)分別為,,點(diǎn)是橢圓上位于第一象限的任一點(diǎn),且當(dāng)時(shí),.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)若橢圓上點(diǎn)與點(diǎn)關(guān)于原點(diǎn)對(duì)稱,過(guò)點(diǎn)作垂直于軸,垂足為,連接并延長(zhǎng)交于另一點(diǎn),交軸于點(diǎn).(?。┣竺娣e最大值;(ⅱ)證明:直線與斜率之積為定值.20.(12分)已知直線的參數(shù)方程:(為參數(shù))和圓的極坐標(biāo)方程:(1)將直線的參數(shù)方程化為普通方程,圓的極坐標(biāo)方程化為直角坐標(biāo)方程;(2)已知點(diǎn),直線與圓相交于、兩點(diǎn),求的值.21.(12分)設(shè)函數(shù).(1)當(dāng)時(shí),解不等式;(2)若的解集為,,求證:.22.(10分)如圖,四棱錐中,側(cè)面為等腰直角三角形,平面.(1)求證:平面;(2)求直線與平面所成的角的正弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.D【解析】
,不能得到,成立也不能推出,即可得到答案.【詳解】因?yàn)閤,,當(dāng)時(shí),不妨取,,故時(shí),不成立,當(dāng)時(shí),不妨取,則不成立,綜上可知,“”是“”的既不充分也不必要條件,故選:D【點(diǎn)睛】本題主要考查了充分條件,必要條件的判定,屬于容易題.2.B【解析】
計(jì)算出的值,推導(dǎo)出,再由,結(jié)合數(shù)列的周期性可求得數(shù)列的前項(xiàng)和.【詳解】由題意可知,則對(duì)任意的,,則,,由,得,,,,因此,.故選:B.【點(diǎn)睛】本題考查數(shù)列求和,考查了數(shù)列的新定義,推導(dǎo)出數(shù)列的周期性是解答的關(guān)鍵,考查推理能力與計(jì)算能力,屬于中等題.3.C【解析】
連結(jié)并延長(zhǎng)PO,交對(duì)棱C1D1于R,則R為對(duì)棱的中點(diǎn),取MN的中點(diǎn)H,則OH⊥MN,推導(dǎo)出OH∥RQ,且OH=RQ=,由此能求出該直線被球面截在球內(nèi)的線段的長(zhǎng).【詳解】如圖,MN為該直線被球面截在球內(nèi)的線段連結(jié)并延長(zhǎng)PO,交對(duì)棱C1D1于R,則R為對(duì)棱的中點(diǎn),取MN的中點(diǎn)H,則OH⊥MN,∴OH∥RQ,且OH=RQ=,∴MH===,∴MN=.故選:C.【點(diǎn)睛】本題主要考查該直線被球面截在球內(nèi)的線段的長(zhǎng)的求法,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,是中檔題.4.A【解析】
利用正弦定理邊角互化思想結(jié)合余弦定理可求得角的值,再利用正弦定理可求得的值.【詳解】,由正弦定理得,整理得,由余弦定理得,,.由正弦定理得.故選:A.【點(diǎn)睛】本題考查利用正弦定理求值,涉及正弦定理邊角互化思想以及余弦定理的應(yīng)用,考查計(jì)算能力,屬于中等題.5.B【解析】
由題意知,,由,知,由此能求出.【詳解】由題意知,,,解得,,.故選:B.【點(diǎn)睛】本題考查離散型隨機(jī)變量的方差的求法,解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意二項(xiàng)分布的靈活運(yùn)用.6.D【解析】
根據(jù)題意,求出集合A,進(jìn)而求出集合和,分析選項(xiàng)即可得到答案.【詳解】根據(jù)題意,則故選:D【點(diǎn)睛】此題考查集合的交并集運(yùn)算,屬于簡(jiǎn)單題目,7.C【解析】
分別假設(shè)甲乙丙丁說(shuō)的是真話,結(jié)合其他人的說(shuō)法,看是否只有一個(gè)說(shuō)的是真話,即可求得年紀(jì)最大者,即可求得答案.【詳解】①假設(shè)甲說(shuō)的是真話,則年紀(jì)最大的是甲,那么乙說(shuō)謊,丙也說(shuō)謊,而丁說(shuō)的是真話,而已知只有一個(gè)人說(shuō)的是真話,故甲說(shuō)的不是真話,年紀(jì)最大的不是甲;②假設(shè)乙說(shuō)的是真話,則年紀(jì)最大的是乙,那么甲說(shuō)謊,丙說(shuō)真話,丁也說(shuō)真話,而已知只有一個(gè)人說(shuō)的是真話,故乙說(shuō)謊,年紀(jì)最大的也不是乙;③假設(shè)丙說(shuō)的是真話,則年紀(jì)最大的是乙,所以乙說(shuō)真話,甲說(shuō)謊,丁說(shuō)的是真話,而已知只有一個(gè)人說(shuō)的是真話,故丙在說(shuō)謊,年紀(jì)最大的也不是乙;④假設(shè)丁說(shuō)的是真話,則年紀(jì)最大的不是丁,而已知只有一個(gè)人說(shuō)的是真話,那么甲也說(shuō)謊,說(shuō)明甲也不是年紀(jì)最大的,同時(shí)乙也說(shuō)謊,說(shuō)明乙也不是年紀(jì)最大的,年紀(jì)最大的只有一人,所以只有丙才是年紀(jì)最大的,故假設(shè)成立,年紀(jì)最大的是丙.綜上所述,年紀(jì)最大的是丙故選:C.【點(diǎn)睛】本題考查合情推理,解題時(shí)可從一種情形出發(fā),推理出矛盾的結(jié)論,說(shuō)明這種情形不會(huì)發(fā)生,考查了分析能力和推理能力,屬于中檔題.8.A【解析】
根據(jù)復(fù)數(shù)的除法運(yùn)算,代入化簡(jiǎn)即可求解.【詳解】復(fù)數(shù),則故選:A.【點(diǎn)睛】本題考查了復(fù)數(shù)的除法運(yùn)算與化簡(jiǎn)求值,屬于基礎(chǔ)題.9.C【解析】
分情況討論,由間接法得到“數(shù)”必須排在前兩節(jié),“禮”和“樂(lè)”必須分開的事件個(gè)數(shù),不考慮限制因素,總數(shù)有種,進(jìn)而得到結(jié)果.【詳解】當(dāng)“數(shù)”位于第一位時(shí),禮和樂(lè)相鄰有4種情況,禮和樂(lè)順序有2種,其它剩下的有種情況,由間接法得到滿足條件的情況有當(dāng)“數(shù)”在第二位時(shí),禮和樂(lè)相鄰有3種情況,禮和樂(lè)順序有2種,其它剩下的有種,由間接法得到滿足條件的情況有共有:種情況,不考慮限制因素,總數(shù)有種,故滿足條件的事件的概率為:故答案為:C.【點(diǎn)睛】解排列組合問(wèn)題要遵循兩個(gè)原則:①按元素(或位置)的性質(zhì)進(jìn)行分類;②按事情發(fā)生的過(guò)程進(jìn)行分步.具體地說(shuō),解排列組合問(wèn)題常以元素(或位置)為主體,即先滿足特殊元素(或位置),再考慮其他元素(或位置).10.A【解析】
由三視圖還原原幾何體如圖,該幾何體為組合體,上半部分為半球,下半部分為圓柱,半球的半徑為1,圓柱的底面半徑為1,高為1.再由球與圓柱體積公式求解.【詳解】由三視圖還原原幾何體如圖,該幾何體為組合體,上半部分為半球,下半部分為圓柱,半球的半徑為1,圓柱的底面半徑為1,高為1.則幾何體的體積為.故選:.【點(diǎn)睛】本題主要考查由三視圖求面積、體積,關(guān)鍵是由三視圖還原原幾何體,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.11.A【解析】試題分析:設(shè)公差為或(舍),故選A.考點(diǎn):等差數(shù)列及其性質(zhì).12.C【解析】
分別求解不等式得到集合,再利用集合的交集定義求解即可.【詳解】,,∴.故選C.【點(diǎn)睛】本題主要考查了集合的基本運(yùn)算,難度容易.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
采用數(shù)形結(jié)合,計(jì)算以及,然后根據(jù)橢圓的定義可得,并使用余弦定理以及,可得結(jié)果.【詳解】如圖由,所以由,所以又,則所以所以化簡(jiǎn)可得:則故答案為:【點(diǎn)睛】本題考查橢圓的定義以及余弦定理的使用,關(guān)鍵在于根據(jù)角度求出線段的長(zhǎng)度,考查分析能力以及計(jì)算能力,屬中檔題.14.【解析】
由于點(diǎn)在橢圓上運(yùn)動(dòng)時(shí),與軸的正方向的夾角在變,所以先設(shè),又由,可知,從而可得,而點(diǎn)在橢圓上,所以將點(diǎn)的坐標(biāo)代入橢圓方程中化簡(jiǎn)可得結(jié)果.【詳解】設(shè),,,則,由,得,代入橢圓方程,得,化簡(jiǎn)得恒成立,由此得,即,故.故答案為:【點(diǎn)睛】此題考查的是利用橢圓中相關(guān)兩個(gè)點(diǎn)的關(guān)系求離心率,綜合性強(qiáng),屬于難題.15.【解析】
運(yùn)用等比數(shù)列的通項(xiàng)公式,即可解得.【詳解】解:,,,,,,,,,,,.故答案為:.【點(diǎn)睛】本題考查等比數(shù)列的通項(xiàng)公式及應(yīng)用,考查計(jì)算能力,屬于基礎(chǔ)題.16.【解析】
設(shè),,設(shè),函數(shù)為奇函數(shù),,函數(shù)單調(diào)遞增,,畫出簡(jiǎn)圖,如圖所示,根據(jù),解得答案.【詳解】,設(shè),,則.原函數(shù)等價(jià)于函數(shù),即有兩個(gè)解.設(shè),則,函數(shù)為奇函數(shù).,函數(shù)單調(diào)遞增,,,.當(dāng)時(shí),易知不成立;當(dāng)時(shí),根據(jù)對(duì)稱性,考慮時(shí)的情況,,畫出簡(jiǎn)圖,如圖所示,根據(jù)圖像知:故,即,根據(jù)對(duì)稱性知:.故答案為:.【點(diǎn)睛】本題考查了函數(shù)零點(diǎn)問(wèn)題,意在考查學(xué)生的轉(zhuǎn)化能力和計(jì)算能力,畫出圖像是解題的關(guān)鍵.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(1)();(2)證明見(jiàn)解析.【解析】
(1)設(shè)點(diǎn),分別用表示、表示和余弦定理表示,將表示為、的方程,再化簡(jiǎn)即可;(2)設(shè)直線方程代入的軌跡方程,得,設(shè)點(diǎn),,,表示出直線,取,得,即可證明直線過(guò)軸上的定點(diǎn).【詳解】(1)設(shè),由已知,∴,∴(),化簡(jiǎn)得點(diǎn)的軌跡的方程為:();(2)由(1)知,過(guò)點(diǎn)的直線的斜率為0時(shí)與無(wú)交點(diǎn),不合題意故可設(shè)直線的方程為:(),代入的方程得:.設(shè),,則,,.∴直線:.令,得.直線過(guò)軸上的定點(diǎn).【點(diǎn)睛】本題主要考查軌跡方程的求法、余弦定理的應(yīng)用和利用直線和圓錐曲線的位置關(guān)系求定點(diǎn)問(wèn)題,考查學(xué)生的計(jì)算能力,屬于中檔題.18.(1)男生人數(shù)為人,女生人數(shù)55人.(2)列聯(lián)表答案見(jiàn)解析,有95%的把握認(rèn)為“該校學(xué)生的每周平均體育鍛煉時(shí)間與性別有關(guān).【解析】
(1)求出男女比例,按比例分配即可;(2)根據(jù)題意結(jié)合頻率分布表,先求出二聯(lián)表中數(shù)值,再結(jié)合公式計(jì)算,利用表格數(shù)據(jù)對(duì)比判斷即可【詳解】(1)因?yàn)槟猩藬?shù):女生人數(shù)=900:1100=9:11,所以男生人數(shù)為,女生人數(shù)100﹣45=55人,(2)由頻率頻率直方圖可知學(xué)生每周平均體育鍛煉時(shí)間超過(guò)2小時(shí)的人數(shù)為:(1×0.3+1×0.25+1×0.15+1×0.05)×100=75人,每周平均體育鍛煉時(shí)間超過(guò)2小時(shí)的女生人數(shù)為37人,聯(lián)表如下:男生女生總計(jì)每周平均體育鍛煉時(shí)間不超過(guò)2小時(shí)71825每周平均體育鍛煉時(shí)間超過(guò)2小時(shí)383775總計(jì)4555100因?yàn)?.892>3.841,所以有95%的把握認(rèn)為“該校學(xué)生的每周平均體育鍛煉時(shí)間與性別有關(guān).【點(diǎn)睛】本題考查分層抽樣,獨(dú)立性檢驗(yàn),熟記公式,正確計(jì)算是關(guān)鍵,屬于中檔題.19.(1);(2)(?。?;(ⅱ)證明見(jiàn)解析.【解析】
(1)由,解方程組即可得到答案;(2)(?。┰O(shè),,則,,易得,注意到,利用基本不等式得到的最大值即可得到答案;(ⅱ)設(shè)直線斜率為,直線方程為,聯(lián)立橢圓方程得到的坐標(biāo),再利用兩點(diǎn)的斜率公式計(jì)算即可.【詳解】(1)設(shè),由,得.將代入,得,即,由,解得,所以橢圓的標(biāo)準(zhǔn)方程為.(2)設(shè),,則,(ⅰ)易知為的中位線,所以,所以,又滿足,所以,得,故,當(dāng)且僅當(dāng),即,時(shí)取等號(hào),所以面積最大值為.(ⅱ)記直線斜率為,則直線斜率為,所以直線方程為.由,得,由韋達(dá)定理得,所以,代入直線方程,得,于是,直線斜率,所以直線與斜率之積為定值.【點(diǎn)睛】本題考查直線與橢圓的位置關(guān)系,涉及到橢圓中的最值及定值問(wèn)題,在解橢圓與直線的位置關(guān)系的答題時(shí),一般會(huì)用到根與系數(shù)的關(guān)系,考查學(xué)生的數(shù)學(xué)運(yùn)算求解能力,是一道有一定難度的題.20.(1):,:;(2)【解析】
(1)消去參數(shù)求得直線的普通方程,將兩邊同乘以,化簡(jiǎn)求得圓的直角坐標(biāo)方程.(2)求得直線的標(biāo)準(zhǔn)參數(shù)方程,代入圓的直角坐標(biāo)方程,化簡(jiǎn)后寫出韋達(dá)定理,根據(jù)直線參數(shù)的幾何意義,求得的值.【詳解】(1)消去參數(shù),得直線的普通方程為,將兩邊同乘以得,,∴圓的直角坐標(biāo)方程為;(2)經(jīng)檢驗(yàn)點(diǎn)在直線上,可轉(zhuǎn)化為①,將
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 好久都沒(méi)看到合同了的說(shuō)說(shuō)
- 提取公積金還房貸備案合同
- 《氣瓶的基礎(chǔ)知識(shí)》課件
- 2025年武漢貨運(yùn)從業(yè)資格試題及答案
- 2025年廣東貨運(yùn)從業(yè)資格證模擬試題及答案大全
- 2025年欽州貨運(yùn)資格證考試題答案
- 2025年西藏貨運(yùn)從業(yè)資格考試模擬考試題及答案詳解
- 2025年巴彥淖爾貨運(yùn)從業(yè)資格證考試技巧
- 工程安全電力施工合同范本
- 住宅小區(qū)高速電梯施工協(xié)議
- 消防車換季保養(yǎng)計(jì)劃
- 股東會(huì)表決票-文書模板
- 金蛇納瑞企業(yè)2025年會(huì)慶典
- 福建省泉州市2023-2024學(xué)年高一上學(xué)期期末質(zhì)檢英語(yǔ)試題 附答案
- 防止主播跳槽合同模板
- DB13-T 2092-2014 河北省特種設(shè)備使用安全管理規(guī)范
- CMOS-模擬集成電路課件完整
- 2024-2030年中國(guó)養(yǎng)生壺行業(yè)發(fā)展趨勢(shì)及發(fā)展前景研究報(bào)告
- 2024年貴州省六盤水市中考道德與法治試題卷(含答案詳解)
- 浙江省嘉興市2023-2024學(xué)年高一上學(xué)期1月期末考試 英語(yǔ)試題
- 2024年快遞員職業(yè)技能大賽考試題庫(kù)(含答案)
評(píng)論
0/150
提交評(píng)論