江蘇省海安市2025屆高二上數(shù)學(xué)期末調(diào)研模擬試題含解析_第1頁(yè)
江蘇省海安市2025屆高二上數(shù)學(xué)期末調(diào)研模擬試題含解析_第2頁(yè)
江蘇省海安市2025屆高二上數(shù)學(xué)期末調(diào)研模擬試題含解析_第3頁(yè)
江蘇省海安市2025屆高二上數(shù)學(xué)期末調(diào)研模擬試題含解析_第4頁(yè)
江蘇省海安市2025屆高二上數(shù)學(xué)期末調(diào)研模擬試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩9頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

江蘇省海安市2025屆高二上數(shù)學(xué)期末調(diào)研模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.如圖,四棱錐中,底面是邊長(zhǎng)為的正方形,平面,為底面內(nèi)的一動(dòng)點(diǎn),若,則動(dòng)點(diǎn)的軌跡在()A.圓上 B.雙曲線上C.拋物線上 D.橢圓上2.拋物線的準(zhǔn)線方程是,則實(shí)數(shù)的值為()A. B.C.8 D.3.在中,已知,則的形狀是()A.等腰三角形 B.直角三角形C.等腰直角三角形 D.正三角形4.已知,,,若、、三個(gè)向量共面,則實(shí)數(shù)A3 B.5C.7 D.95.若,則下列不等式不能成立是()A. B.C. D.6.若雙曲線的漸近線方程為,則的值為()A.2 B.3C.4 D.67.已知實(shí)數(shù)成等比數(shù)列,則圓錐曲線的離心率為()A. B.2C.或2 D.或8.橢圓的長(zhǎng)軸長(zhǎng)是()A.3 B.6C.9 D.49.若公差不為0的等差數(shù)列的前n項(xiàng)和是,,且,,為等比數(shù)列,則使成立的最大n是()A.6 B.10C.11 D.1210.已知函數(shù)的導(dǎo)函數(shù)為,且滿足,則()A. B.C. D.11.某老師希望調(diào)查全校學(xué)生平均每天的自習(xí)時(shí)間.該教師調(diào)查了60位學(xué)生,發(fā)現(xiàn)他們每天的平均自習(xí)時(shí)間是3.5小時(shí).這里的總體是()A.楊高的全校學(xué)生;B.楊高的全校學(xué)生的平均每天自習(xí)時(shí)間;C.所調(diào)查的60名學(xué)生;D.所調(diào)查的60名學(xué)生的平均每天自習(xí)時(shí)間.12.如圖,在長(zhǎng)方體中,若,,則異面直線和所成角的余弦值為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.圓錐曲線的焦點(diǎn)在軸上,離心率為,則實(shí)數(shù)的值是__________.14.若點(diǎn)為圓的弦的中點(diǎn),則弦所在直線方程為________.15.橢圓的兩焦點(diǎn)為,,P為C上的一點(diǎn)(P與,不共線),則的周長(zhǎng)為______.16.若兩平行直線3x-2y-1=0,6x+ay+c=0之間的距離為,則的值為________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標(biāo)系中,已知.(1)求直線的方程;(2)平面內(nèi)的動(dòng)點(diǎn)滿足,到點(diǎn)與點(diǎn)距離的平方和為24,求動(dòng)點(diǎn)的軌跡方程.18.(12分)已知數(shù)列的前n項(xiàng)和為,,,其中.(1)記,求證:是等比數(shù)列;(2)設(shè),數(shù)列的前n項(xiàng)和為,求證:.19.(12分)在平面直角坐標(biāo)系中,已知點(diǎn),,點(diǎn)滿足,記點(diǎn)的軌跡為.(1)求的方程;(2)已知,是經(jīng)過圓上一點(diǎn)且與相切的兩條直線,斜率分別為,,直線的斜率為,求證:為定值.20.(12分)已知直線恒過拋物線的焦點(diǎn)F(1)求拋物線的方程;(2)若直線與拋物線交于A,B兩點(diǎn),且,求直線的方程21.(12分)已知函數(shù),為自然對(duì)數(shù)的底數(shù).(1)當(dāng)時(shí),證明,,;(2)若函數(shù)在上存在極值點(diǎn),求實(shí)數(shù)的取值范圍.22.(10分)在平面直角坐標(biāo)系中,點(diǎn),直線軸,垂足為H,,圓N過點(diǎn)O,與l的公共點(diǎn)的軌跡為(1)求的方程;(2)過M的直線與交于A,B兩點(diǎn),若,求

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】根據(jù)題意,得到兩兩垂直,以點(diǎn)為坐標(biāo)原點(diǎn),分別以為軸,建立空間直角坐標(biāo)系,設(shè),由題意,得到,,再由得到,求出點(diǎn)的軌跡,即可得出結(jié)果.【詳解】由題意,兩兩垂直,以點(diǎn)為坐標(biāo)原點(diǎn),分別以為軸,建立如圖所示的空間直角坐標(biāo)系,因?yàn)榈酌媸沁呴L(zhǎng)為的正方形,則,,因?yàn)闉榈酌鎯?nèi)的一動(dòng)點(diǎn),所以可設(shè),因此,,因?yàn)槠矫妫?,因此,所以由得,即,整理得:,表示圓,因此,動(dòng)點(diǎn)的軌跡在圓上.故選:A.【點(diǎn)睛】本題主要考查立體幾何中的軌跡問題,靈活運(yùn)用空間向量的方法求解即可,屬于??碱}型.2、B【解析】化簡(jiǎn)方程為,求得拋物線的準(zhǔn)線方程,列出方程,即可求解.【詳解】由拋物線,可得,所以,所以拋物線的準(zhǔn)線方程為,因?yàn)閽佄锞€的準(zhǔn)線方程為,所以,解得.故選:B.3、B【解析】利用誘導(dǎo)公式、兩角和的正弦公式化簡(jiǎn)已知條件,由此判斷出三角形的形狀.【詳解】由,得,得,由于,所以,所以.故選:B4、A【解析】由空間向量共面原理得存在實(shí)數(shù),,使得,由此能求出實(shí)數(shù)【詳解】解:,,,、、三個(gè)向量共面,存在實(shí)數(shù),,使得,即有:,解得,,實(shí)數(shù)故選:【點(diǎn)睛】本題考查空間向量共面原理的應(yīng)用,屬于基礎(chǔ)題5、C【解析】利用不等式的性質(zhì)可判斷ABD,利用賦值法即可判斷C,如.【詳解】解:因?yàn)椋?,所以,,,故ABD正確;對(duì)于C,若,則,故C錯(cuò)誤.故選:C.6、A【解析】根據(jù)雙曲線方程確定焦點(diǎn)位置,再根據(jù)漸近線方程為求解.【詳解】因?yàn)殡p曲線所以焦點(diǎn)在x軸上,又因?yàn)闈u近線方程為,所以,所以.故選:A【點(diǎn)睛】本題主要考查雙曲線的幾何性質(zhì),還考查了理解辨析的能力,屬于基礎(chǔ)題.7、C【解析】根據(jù)成等比數(shù)列求得,再根據(jù)離心率計(jì)算公式即可求得結(jié)果.【詳解】因?yàn)閷?shí)數(shù)成等比數(shù)列,故可得,解得或;當(dāng)時(shí),表示焦點(diǎn)在軸上的橢圓,此時(shí);當(dāng)時(shí),表示焦點(diǎn)在軸上的雙曲線,此時(shí).故選:C.8、B【解析】根據(jù)橢圓方程有,即可確定長(zhǎng)軸長(zhǎng).【詳解】由橢圓方程知:,故長(zhǎng)軸長(zhǎng)為6.故選:B9、C【解析】設(shè)等差數(shù)列的公差為d,根據(jù),且,,為等比數(shù)列,求得首項(xiàng)和公差,再利用前n項(xiàng)和公式求解.【詳解】設(shè)等差數(shù)列的公差為d,因?yàn)椋?,,為等比?shù)列,所以,解得或(舍去),則,所以,解得,所以使成立的最大n是11,故選:C10、C【解析】求出導(dǎo)數(shù)后,把x=e代入,即可求解.【詳解】因?yàn)椋?,解得故選:C11、B【解析】由總體的概念可得答案.【詳解】某老師希望調(diào)查全校學(xué)生平均每天的自習(xí)時(shí)間,該教師調(diào)查了60位學(xué)生,發(fā)現(xiàn)他們每天的平均自習(xí)時(shí)間是3.5小時(shí),這里的總體是全校學(xué)生平均每天的自習(xí)時(shí)間.故選:B.12、D【解析】根據(jù)長(zhǎng)方體中,異面直線和所成角即為直線和所成角,再結(jié)合余弦定理即可求解.【詳解】解:連接、,如下圖所示由圖可知,在長(zhǎng)方體中,且,所以,所以異面直線和所成角即為,又,,由余弦定理可得∶故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)圓錐曲線焦點(diǎn)在軸上且離心率小于1,確定a,b求解即可.【詳解】因?yàn)閳A錐曲線的焦點(diǎn)在軸上,離心率為,所以曲線為橢圓,且,所以,解得,故答案為:14、【解析】因?yàn)闉閳A的弦的中點(diǎn),所以圓心坐標(biāo)為,,所在直線方程為,化簡(jiǎn)為,故答案為.考點(diǎn):1、兩直線垂直斜率的關(guān)系;2、點(diǎn)斜式求直線方程.15、【解析】結(jié)合橢圓的定義求得正確答案.【詳解】橢圓方程為,所以,所以三角形的周長(zhǎng)為.故答案為:16、±1【解析】由題意得=≠,∴a=-4且c≠-2,則6x+ay+c=0可化為3x-2y+=0,由兩平行線間的距離公式,得=,解得c=2或c=-6,∴=±1三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)結(jié)合點(diǎn)斜式求得直線的方程.(2)設(shè),根據(jù)已知條件列方程,化簡(jiǎn)求得的軌跡方程.【小問1詳解】,于是直線的方程為,即【小問2詳解】設(shè)動(dòng)點(diǎn),于是,代入坐標(biāo)得,化簡(jiǎn)得,于是動(dòng)點(diǎn)的軌跡方程為18、(1)證明見解析;(2)證明見解析.【解析】(1)應(yīng)用的關(guān)系,結(jié)合構(gòu)造法可得,根據(jù)已知條件及等比數(shù)列的定義即可證結(jié)論.(2)由(1)得,再應(yīng)用錯(cuò)位相減法求,即可證結(jié)論.【小問1詳解】證明:對(duì)任意的,,,時(shí),,解得,時(shí),因?yàn)?,,兩式相減可得:,即有,∴,又,則,因?yàn)椋?,所以,?duì)任意的,,所以,因此,是首項(xiàng)和公比均為3的等比數(shù)列【小問2詳解】由(1)得:,則,,,兩式相減得:,化簡(jiǎn)可得:,又,∴.19、(1);(2)證明見解析.【解析】(1)根據(jù)雙曲線的定義可得答案;(2)設(shè),過點(diǎn)的的切線方程為,聯(lián)立此直線與雙曲線的方程消元,然后由可得,即可得到,然后可證明.【小問1詳解】因?yàn)椋渣c(diǎn)的軌跡是以為焦點(diǎn)的雙曲線的右支,所以,,所以,所以的方程為【小問2詳解】設(shè),則,設(shè)過點(diǎn)的切線方程為,聯(lián)立可得由可得,所以所以20、(1)(2)或【解析】(1)把直線化為,得到拋物線的焦點(diǎn)為,求得,即可求得拋物線的方程;(2)聯(lián)立方程組,得到,,結(jié)合,列出方程求得的值,即可求得直線的方程【小問1詳解】解:將直線化為,可得直線恒過點(diǎn),即拋物線的焦點(diǎn)為,所以,解得,所以拋物線的方程為【小問2詳解】解:由題意顯然,聯(lián)立方程組,整理得,設(shè),,則,,因?yàn)?,所以,解得,所以或,所以直線的方程為或21、(1)證明見解析:(2)【解析】(1)代入,求導(dǎo)分析函數(shù)單調(diào)性,再的最小值即可證明.(2),若函數(shù)在上存在兩個(gè)極值點(diǎn),則在上有根.再分,與,利用函數(shù)的零點(diǎn)存在定理討論導(dǎo)函數(shù)的零點(diǎn)即可.【詳解】(1)證明:當(dāng)時(shí),,則,當(dāng)時(shí),,則,又因?yàn)?所以當(dāng)時(shí),,僅時(shí),,所以在上是單調(diào)遞減,所以,即.(2),因?yàn)?所以,①當(dāng)時(shí),恒成立,所以在上單調(diào)遞增,沒有極值點(diǎn).②當(dāng)時(shí),在區(qū)間上單調(diào)遞增,因?yàn)?當(dāng)時(shí),,所以在上單調(diào)遞減,沒有極值點(diǎn).當(dāng)時(shí),,所以存在,使當(dāng)時(shí),時(shí),所以在處取得極小值,為極小值點(diǎn).綜上可知,若函數(shù)在上存在極值點(diǎn),則實(shí)數(shù).【點(diǎn)睛】本題主要考查了利用導(dǎo)函數(shù)求解函數(shù)的單調(diào)性與最值,進(jìn)而證明不等式的方法.同時(shí)也考查了利用導(dǎo)數(shù)分析函數(shù)極值點(diǎn)的問題,需要結(jié)合零點(diǎn)存在定理求解.屬于難題.22、(1);(2).【解析】(1)設(shè)出圓N與l的公共點(diǎn)坐標(biāo),再探

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論