版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025屆福建省閩侯第四中學(xué)高二上數(shù)學(xué)期末聯(lián)考模擬試題注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知函數(shù)在上是增函數(shù),則實(shí)數(shù)的取值范圍是()A. B.C. D.2.正三棱柱各棱長(zhǎng)均為為棱的中點(diǎn),則點(diǎn)到平面的距離為()A. B.C. D.13.箱子中有5件產(chǎn)品,其中有2件次品,從中隨機(jī)抽取2件產(chǎn)品,設(shè)事件=“至少有一件次品”,則的對(duì)立事件為()A.至多兩件次品 B.至多一件次品C.沒(méi)有次品 D.至少一件次品4.過(guò)點(diǎn),且斜率為2的直線方程是A. B.C. D.5.已知實(shí)數(shù)x,y滿足,則的取值范圍是()A. B.C. D.6.已知點(diǎn)分別為圓與圓的任意一點(diǎn),則的取值范圍是()A. B.C. D.7.(5分)已知集合A={x|?2<x<4},集合B={x|(x?6)(x+1)<0},則A∩B=A.{x|1<x<4} B.{x|x<4或x>6}C.{x|?2<x<?1} D.{x|?1<x<4}8.甲、乙兩人下棋,甲獲勝的概率為30%,甲不輸?shù)母怕蕿?0%,則甲、乙下成平局的概率()A.50% B.30%C.10% D.60%9.設(shè)是虛數(shù)單位,則復(fù)數(shù)對(duì)應(yīng)的點(diǎn)在平面內(nèi)位于()A.第一象限 B.第二象限C.第三象限 D.第四象限10.已知雙曲線的一條漸近線方程為,它的焦距為2,則雙曲線的方程為()A B.C. D.11.對(duì)于三次函數(shù),給出定義:設(shè)是函數(shù)的導(dǎo)數(shù),是的導(dǎo)數(shù),若方程有實(shí)數(shù)解,則稱點(diǎn)為函數(shù)的“拐點(diǎn)”.經(jīng)過(guò)探究發(fā)現(xiàn):任何一個(gè)三次函數(shù)都有“拐點(diǎn)”;任何一個(gè)三次函數(shù)圖象都有對(duì)稱中心,且“拐點(diǎn)”就是對(duì)稱中心.設(shè)函數(shù),則()A. B.C. D.12.在中,,則邊的長(zhǎng)等于()A. B.C. D.2二、填空題:本題共4小題,每小題5分,共20分。13.某人有樓房一棟,室內(nèi)面積共計(jì),擬分割成兩類房間作為旅游客房,大房間每間面積為,可住游客4名,每名游客每天的住宿費(fèi)100元;小房間每間面積為,可住游客2名,每名游客每天的住宿費(fèi)150元;裝修大房間每間需要3萬(wàn)元,裝修小房間每間需要2萬(wàn)元.如果他只能籌款25萬(wàn)元用于裝修,且假定游客能住滿客房,則該人一天能獲得的住宿費(fèi)的最大值為_(kāi)__________元.14.若直線與直線互相垂直,則___________.15.已知直線:和:,且,則實(shí)數(shù)__________,兩直線與之間的距離為_(kāi)_________16.秦九韶出生于普州(今資陽(yáng)市安岳縣),是我國(guó)南宋時(shí)期偉大的數(shù)學(xué)家,他創(chuàng)立的秦九韶算法歷來(lái)為人稱道,其本質(zhì)是將一個(gè)次多項(xiàng)式寫成個(gè)一次式相組合的形式,如可將寫成,由此可得__________三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)求下列不等式的解集:(1);(2)18.(12分)某初中學(xué)校響應(yīng)“雙減政策”,積極探索減負(fù)增質(zhì)舉措,優(yōu)化作業(yè)布置,減少家庭作業(yè)時(shí)間.現(xiàn)為調(diào)查學(xué)生的家庭作業(yè)時(shí)間,隨機(jī)抽取了名學(xué)生,記錄他們每天完成家庭作業(yè)的時(shí)間(單位:分鐘),將其分為,,,,,六組,其頻率分布直方圖如下圖:(1)求的值,并估計(jì)這名學(xué)生完成家庭作業(yè)時(shí)間的中位數(shù)(中位數(shù)結(jié)果保留一位小數(shù));(2)現(xiàn)用分層抽樣的方法從第三組和第五組中隨機(jī)抽取名學(xué)生進(jìn)行“雙減政策”情況訪談,再?gòu)脑L談的學(xué)生中選取名學(xué)生進(jìn)行成績(jī)跟蹤,求被選作成績(jī)跟蹤的名學(xué)生中,第三組和第五組各有名的概率19.(12分)已知橢圓的右焦點(diǎn)為,且經(jīng)過(guò)點(diǎn).(1)求橢圓的標(biāo)準(zhǔn)方程;(2)設(shè)橢圓的左頂點(diǎn)為,過(guò)點(diǎn)的直線(與軸不重合)交橢圓于兩點(diǎn),直線交直線于點(diǎn),若直線上存在另一點(diǎn),使.求證:三點(diǎn)共線.20.(12分)數(shù)列{}的首項(xiàng)為,且(1)證明數(shù)列為等比數(shù)列,并求數(shù)列{}的通項(xiàng)公式;(2)若,求數(shù)列{}的前n項(xiàng)和21.(12分)已知:,有,:方程表示經(jīng)過(guò)第二、三象限的拋物線,.(1)若是真命題,求實(shí)數(shù)的取值范圍;(2)若“”是假命題,“”是真命題,求實(shí)數(shù)的取值范圍.22.(10分)已知橢圓過(guò)點(diǎn),且離心率(1)求橢圓的方程;(2)設(shè)點(diǎn)為橢圓的左焦點(diǎn),點(diǎn),過(guò)點(diǎn)作的垂線交橢圓于點(diǎn),,連接與交于點(diǎn)①若,求;②求的值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】由題意可知,對(duì)任意的恒成立,可得出對(duì)任意的恒成立,利用基本不等式可求得實(shí)數(shù)的取值范圍.【詳解】因?yàn)?,則,由題意可知,對(duì)任意的恒成立,所以,對(duì)任意的恒成立,由基本不等式可得,當(dāng)且僅當(dāng)時(shí),等號(hào)成立,所以,.故選:A.2、C【解析】建立空間直角坐標(biāo)系,利用點(diǎn)面距公式求得正確答案.【詳解】設(shè)分別是的中點(diǎn),根據(jù)正三棱柱的性質(zhì)可知兩兩垂直,以為原點(diǎn)建立如圖所示空間直角坐標(biāo)系,,,.設(shè)平面的法向量為,則,故可設(shè),所以點(diǎn)到平面的距離為.故選:C3、C【解析】利用對(duì)立事件的定義,分析即得解【詳解】箱子中有5件產(chǎn)品,其中有2件次品,從中隨機(jī)抽取2件產(chǎn)品,可能出現(xiàn):“兩件次品”,“一件次品,一件正品”,“兩件正品”三種情況根據(jù)對(duì)立事件的定義,事件=“至少有一件次品”其對(duì)立事件為:“兩件正品”,即”沒(méi)有次品“故選:C4、A【解析】由直線點(diǎn)斜式計(jì)算出直線方程.【詳解】因?yàn)橹本€過(guò)點(diǎn),且斜率為2,所以該直線方程為,即.故選【點(diǎn)睛】本題考查了求直線方程,由題意已知點(diǎn)坐標(biāo)和斜率,故選用點(diǎn)斜式即可求出答案,較為簡(jiǎn)單.5、B【解析】實(shí)數(shù),滿足,通過(guò)討論,得到其圖象是橢圓、雙曲線的一部分組成的圖形,借助圖象分析可得的取值就是圖象上一點(diǎn)到直線距離范圍的2倍,求出切線方程根據(jù)平行直線距離公式算出最小值,和最大值的極限值即可得出答案.【詳解】因?yàn)閷?shí)數(shù),滿足,所以當(dāng)時(shí),,其圖象是位于第一象限,焦點(diǎn)在軸上的雙曲線的一部分(含點(diǎn)),當(dāng)時(shí),其圖象是位于第四象限,焦點(diǎn)在軸上的橢圓的一部分,當(dāng)時(shí),其圖象不存在,當(dāng)時(shí),其圖象是位于第三象限,焦點(diǎn)在軸上的雙曲線的一部分,作出橢圓和雙曲線的圖象,其中圖象如下:任意一點(diǎn)到直線的距離所以,結(jié)合圖象可得的范圍就是圖象上一點(diǎn)到直線距離范圍的2倍,雙曲線,其中一條漸近線與直線平行,通過(guò)圖形可得當(dāng)曲線上一點(diǎn)位于時(shí),取得最小值,無(wú)最大值,小于兩平行線與之間的距離的倍,設(shè)與其圖像在第一象限相切于點(diǎn),由因?yàn)榛颍ㄉ崛ィ┧灾本€與直線的距離為此時(shí),所以的取值范圍是故選:B【點(diǎn)睛】三種距離公式:(1)兩點(diǎn)間的距離公式:平面上任意兩點(diǎn)間的距離公式為;(2)點(diǎn)到直線的距離公式:點(diǎn)到直線的距離;(3)兩平行直線間的距離公式:兩條平行直線與間的距離.6、B【解析】先判定兩圓的位置關(guān)系為相離的關(guān)系,然后利用幾何方法得到的取值范圍.【詳解】的圓心為,半徑,的圓心為,半徑,圓心距,∴兩圓相離,∴,故選:B.7、D【解析】由(x?6)(x+1)<0,得?1<x<6,從而有B={x|?1<x<6},所以A∩B={x|?1<x<4},故選D8、A【解析】根據(jù)甲獲勝和甲、乙兩人下成平局是互斥事件即可求解.【詳解】甲不輸有兩種情況:甲獲勝或甲、乙兩人下成平局,甲獲勝和甲、乙兩人下成平局是互斥事件,所以甲、乙兩人下成平局的概率為.故選:A.9、A【解析】計(jì)算出復(fù)數(shù)即可得出結(jié)果.【詳解】由于,對(duì)應(yīng)的點(diǎn)的坐標(biāo)為,在第一象限,故選:A.10、B【解析】根據(jù)雙曲線的一條漸近線方程為,可得,再結(jié)合焦距為2和,求得,即可得解.【詳解】解:因?yàn)殡p曲線的一條漸近線方程為,所以,即,又因焦距為2,即,即,因?yàn)椋?,所以,所以雙曲線的方程為.故選:B.11、B【解析】根據(jù)“拐點(diǎn)”的概念可判斷函數(shù)的對(duì)稱中心,進(jìn)而求解.【詳解】,,,令,解得:,而,故函數(shù)關(guān)于點(diǎn)對(duì)稱,,,故選:B.12、A【解析】由余弦定理求解【詳解】由余弦定理,得,即,解得(負(fù)值舍去)故選:A二、填空題:本題共4小題,每小題5分,共20分。13、3600【解析】先設(shè)分割大房間為間,小房間為間,收益為元,列出約束條件,再根據(jù)約束條件畫出可行域,設(shè),再利用的幾何意義求最值,只需求出直線過(guò)可行域內(nèi)的整數(shù)點(diǎn)時(shí),從而得到值即可【詳解】解:設(shè)裝修大房間間,小房間間,收益為萬(wàn)元,則,目標(biāo)函數(shù),由,解得畫出可行域,得到目標(biāo)函數(shù)過(guò)點(diǎn)時(shí),有最大值,故應(yīng)隔出大房間3間和小房間8間,每天能獲得最大的房租收益最大,且為3600元故答案為:360014、4【解析】由直線垂直的性質(zhì)求解即可.【詳解】由題意得,解得.故答案為:15、①.-4;②.2【解析】根據(jù)兩直線平行斜率相等求解參數(shù)即可;運(yùn)用兩平行線間的距離公式計(jì)算兩直線之間的距離可得出答案.【詳解】解:直線和,,,解得;∴兩直線與間的距離是:.故答案為:;2.16、【解析】利用代入法進(jìn)行求解即可.【詳解】故答案為:三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)【解析】(1)利用一元二次不等式的解法求解;(2)利用分式不等式的解法求解.【小問(wèn)1詳解】解:因?yàn)?,所以,解得,所以不等式的解集是;【小?wèn)2詳解】因?yàn)?,所以,所以,即,解得,所以不等式的解集?18、(1);這名學(xué)生完成家庭作業(yè)時(shí)間的中位數(shù)約為分鐘(2)【解析】(1)由頻率分布直方圖頻率之和為,建立方程求解即可;設(shè)中位數(shù)為,利用頻率分布直方圖中位數(shù)定義列出方程即可求解;(2)頻率分布直方圖頻率得到第三組和第五組的人數(shù),從而列出所有樣本點(diǎn),再根據(jù)題意利用古典概率模型求解即可.【小問(wèn)1詳解】根據(jù)頻率分布直方圖可得:,解得.設(shè)中位數(shù)為,由題意得,解得所以這名學(xué)生完成家庭作業(yè)時(shí)間的中位數(shù)約為分鐘【小問(wèn)2詳解】由頻率分布直方圖知,第三組和第五組的人數(shù)之比為,所以分層抽樣抽出的人中,第三組和第五組的人數(shù)分別為人和人,第三組的名學(xué)生記為,,,,第五組的名學(xué)生記為,,所以從名學(xué)生中抽取名的樣本空間,共15個(gè)樣本點(diǎn),記事件“名中學(xué)生,第三組和第五組各名”則,共有個(gè)樣本點(diǎn),所以這名學(xué)生中,兩組各有名的概率19、(1);(2)證明見(jiàn)解析.【解析】(1)根據(jù)給定條件利用橢圓的定義求出軸長(zhǎng)即可計(jì)算作答.(2)根據(jù)給定條件設(shè)出的方程,與橢圓C的方程聯(lián)立,求出直線PA的方程并求出點(diǎn)M的坐標(biāo),求出點(diǎn)N的坐標(biāo),再利用斜率推理作答.【小問(wèn)1詳解】依題意,橢圓的左焦點(diǎn),由橢圓定義得:即,則,所以橢圓的標(biāo)準(zhǔn)方程為.【小問(wèn)2詳解】由(1)知,,直線不垂直y軸,設(shè)直線方程為,,由消去x得:,則,,直線的斜率,直線的方程:,而直線,即,直線的斜率,而,即,直線的斜率,直線的方程:,則點(diǎn),直線的斜率,直線的斜率,,而,即,所以三點(diǎn)共線.【點(diǎn)睛】思路點(diǎn)睛:解答直線與橢圓的題目時(shí),時(shí)常把兩個(gè)曲線的方程聯(lián)立,消去x(或y)建立一元二次方程,然后借助根與系數(shù)的關(guān)系,并結(jié)合題設(shè)條件建立有關(guān)參變量的等量關(guān)系20、(1)證明見(jiàn)解析,;(2).【解析】(1)利用給定的遞推公式變形,再利用等比數(shù)列定義直接判斷并求出通項(xiàng)得解.(2)由(1)的結(jié)論求出,再利用裂項(xiàng)相消法計(jì)算作答.【小問(wèn)1詳解】數(shù)列{}中,,則,由得:,所以數(shù)列是首項(xiàng)為3,公比為2的等比數(shù)列,則有,即,所以數(shù)列{}的通項(xiàng)公式是.【小問(wèn)2詳解】由(1)知,,,則,所以數(shù)列{}的前n項(xiàng)和.21、(1)(2)【解析】(1)將問(wèn)題轉(zhuǎn)化為不等式對(duì)應(yīng)的方程無(wú)解,進(jìn)而根據(jù)根的判別式小于0,計(jì)算即可;(2)根據(jù)且、或命題的真假判斷命題p、q的真假,列出對(duì)應(yīng)的不等式組,解之即可.【小問(wèn)1詳解】由條件知,恒成立,只需的.解得.【小問(wèn)2詳解】若為真命題,則,解得.若“”是假命題,“”是真命題,所以和一真一假若真假,則,解得.若假真,則,解得.綜上,實(shí)數(shù)的取值范圍是.22、(1)(2)①,②【解析】(1)由題意
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年版中英雙語(yǔ)國(guó)際法律事務(wù)合作中英文三方合同模板3篇
- 二零二五年度綠色交通設(shè)施建設(shè)擔(dān)保協(xié)議3篇
- 二零二五版建筑質(zhì)量檢測(cè)與驗(yàn)收合同范本3篇
- 二零二五版預(yù)制混凝土構(gòu)件鋼筋采購(gòu)合同標(biāo)準(zhǔn)3篇
- 2025年度個(gè)人購(gòu)房擔(dān)保借款合同房產(chǎn)抵押貸款服務(wù)合同4篇
- 普華永道-2024年新西蘭投資與商務(wù)指南報(bào)告-Doing Business in Aotearoa New Zealand Guide
- 2025年度個(gè)人生活規(guī)劃與管理合同4篇
- 二零二五年度苗木種植與環(huán)境保護(hù)責(zé)任合同樣本3篇
- 餐飲服務(wù)禮儀培訓(xùn)模板
- 2025年生態(tài)修復(fù)土石方工程勞務(wù)承包協(xié)議3篇
- 2024年高純氮化鋁粉體項(xiàng)目可行性分析報(bào)告
- 安檢人員培訓(xùn)
- 危險(xiǎn)性較大分部分項(xiàng)工程及施工現(xiàn)場(chǎng)易發(fā)生重大事故的部位、環(huán)節(jié)的預(yù)防監(jiān)控措施
- 《榜樣9》觀后感心得體會(huì)四
- 2023事業(yè)單位筆試《公共基礎(chǔ)知識(shí)》備考題庫(kù)(含答案)
- 化學(xué)-廣東省廣州市2024-2025學(xué)年高一上學(xué)期期末檢測(cè)卷(一)試題和答案
- 2025四川中煙招聘高頻重點(diǎn)提升(共500題)附帶答案詳解
- EHS工程師招聘筆試題與參考答案(某大型央企)2024年
- 營(yíng)銷策劃 -麗亭酒店品牌年度傳播規(guī)劃方案
- 2025年中國(guó)蛋糕行業(yè)市場(chǎng)規(guī)模及發(fā)展前景研究報(bào)告(智研咨詢發(fā)布)
- 護(hù)理組長(zhǎng)年底述職報(bào)告
評(píng)論
0/150
提交評(píng)論