




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
河北省正定縣第七中學(xué)2025屆高二上數(shù)學(xué)期末復(fù)習(xí)檢測模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知直三棱柱中,,,,則異面直線與所成角的余弦值為()A. B.C. D.2.已知等差數(shù)列的公差為,則“”是“數(shù)列為單調(diào)遞增數(shù)列”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件3.已知關(guān)于的不等式的解集是,則的值是()A B.5C. D.74.某學(xué)校要從5名男教師和3名女教師中隨機選出3人去支教,則抽取的3人中,女教師最多為1人的選法種數(shù)為()A.10 B.30C.40 D.465.已知雙曲線,過其右焦點作漸近線的垂線,垂足為,延長交另一條漸近線于點A.已知為原點,且,則()A. B.C. D.6.邊長為的正方形沿對角線折成直二面角,、分別為、的中點,是正方形的中心,則的大小為()A. B.C. D.7.有3個興趣小組,甲、乙兩位同學(xué)各自參加其中一個小組,每位同學(xué)參加各個小組可能性相同,則這兩位同學(xué)參加同一個興趣小組的概率為A. B.C. D.8.已知橢圓的左右焦點分別為,直線與C相交于M,N兩點(其中M在第一象限),若M,,N,四點共圓,且直線傾斜角不小于,則橢圓C的離心率e的取值范圍是()A. B.C. D.9.等差數(shù)列前項和,已知,,則的值是().A. B.C. D.10.已知過點A(a,0)作曲線C:y=x?ex的切線有且僅有兩條,則實數(shù)a的取值范圍是()A.(﹣∞,﹣4)∪(0,+∞) B.(0,+∞)C.(﹣∞,﹣1)∪(1,+∞) D.(﹣∞,﹣1)11.已知向量,,且與互相垂直,則()A. B.C. D.12.已知是公差為3的等差數(shù)列.若,,成等比數(shù)列,則的前10項和()A.165 B.138C.60 D.30二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列的各項均為正數(shù),記為的前n項和,從下面①②③中選取兩個作為條件,證明另外一個成立①數(shù)列是等差數(shù)列:②數(shù)列是等差數(shù)列;③注:若選擇不同的組合分別解答,則按第一個解答計分14.《九章算術(shù)》中的“商功”篇主要講述了以立體幾何為主的各種形體體積的計算,其中塹堵是指底面為直角三角形的直棱柱.如圖,在塹堵,中,M是的中點,,,,若,則_________15.已知數(shù)列則是這個數(shù)列的第________項.16.在平面直角坐標(biāo)系中,直線與橢圓交于兩點,且,則該橢圓的離心率為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,四邊形是正方形,平面,,(1)證明:平面平面;(2)若與平面所成角為,求二面角的余弦值18.(12分)已知橢圓(a>b>0)的右焦點為F2(3,0),離心率為e.(1)若e=,求橢圓的方程;(2)設(shè)直線y=kx與橢圓相交于A,B兩點,M,N分別為線段AF2,BF2的中點,若坐標(biāo)原點O在以MN為直徑的圓上,且<e≤,求k的取值范圍.19.(12分)已知直線與拋物線交于兩點(1)若,直線過拋物線的焦點,線段中點的縱坐標(biāo)為2,求的長;(2)若交于,求的值20.(12分)某工廠修建一個長方體無蓋蓄水池,其容積為4800立方米,深度為3米.池底每平方米的造價為150元,池壁每平方米的造價為120元.設(shè)池底長方形長為x米(1)求底面積,并用含x的表達(dá)式表示池壁面積;(2)怎樣設(shè)計水池能使總造價最低?最低造價是多少?21.(12分)已知拋物線:的焦點是圓與軸的一個交點.(1)求拋物線的方程;(2)若過點的直線與拋物線交于不同的兩點A、B,О為坐標(biāo)原點,證明:.22.(10分)已知函數(shù)(1)當(dāng)時,求的單調(diào)遞減區(qū)間;(2)若關(guān)于的方程恰有兩個不等實根,求實數(shù)的取值范圍
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】作出輔助線,找到異面直線與所成角,進(jìn)而利用余弦定理及勾股定理求出各邊長,最后利用余弦定理求出余弦值.【詳解】如圖所示,把三棱柱補成四棱柱,異面直線與所成角為,由勾股定理得:,,∴故選:C2、C【解析】利用等差數(shù)列的定義和數(shù)列單調(diào)性的定義判斷可得出結(jié)論.【詳解】若,則,即,此時,數(shù)列為單調(diào)遞增數(shù)列,即“”“數(shù)列為單調(diào)遞增數(shù)列”;若等差數(shù)列為單調(diào)遞增數(shù)列,則,即“”“數(shù)列為單調(diào)遞增數(shù)列”.因此,“”是“數(shù)列為單調(diào)遞增數(shù)列”的充分必要條件.故選:C.3、D【解析】由題意可得的根為,然后利用根與系數(shù)的關(guān)系列方程組可求得結(jié)果【詳解】因為關(guān)于的不等式的解集是,所以方程的根為,所以,得,所以,故選:D4、C【解析】可分為女教師0人,男教師3人和女教師1人,男教師2人兩種情況,用組合數(shù)表示計算即得解【詳解】女教師最多為1人即女教師為0人或者1人若女教師為0人,則男教師有3人,有種選擇;若女教師為1人,則男教師2人,有種選擇;故女教師最多為1人的選法種數(shù)為種故選:C5、C【解析】畫出圖象,結(jié)合漸近線方程得到,,進(jìn)而得到,結(jié)合漸近線的斜率及角度關(guān)系,列出方程,求出,從而求出.【詳解】漸近線為,如圖,過點F作FB垂直于點B,交于點A,則到漸近線距離為,則,又,由勾股定理得:,則,又,,所以,解得:,所以.故選:C6、B【解析】建立空間直角坐標(biāo)系,以向量法去求的大小即可解決.【詳解】由題意可得平面,,則兩兩垂直以O(shè)為原點,分別以O(shè)B、OA、OC所在直線為x、y、z軸建立空間直角坐標(biāo)系則,,,,又,則故選:B7、A【解析】每個同學(xué)參加的情形都有3種,故兩個同學(xué)參加一組的情形有9種,而參加同一組的情形只有3種,所求的概率為p=選A8、B【解析】設(shè)橢圓的半焦距為c,由橢圓的中心對稱性和圓的性質(zhì)得以為直徑的圓與橢圓C有公共點,則有以,再根據(jù)直線傾斜角不小于得,由橢圓的定義得,由此可求得橢圓離心率的范圍.【詳解】解:設(shè)橢圓的半焦距為c,由橢圓的中心對稱性和M,,N,四點共圓得,四邊形必為一個矩形,即以為直徑的圓與橢圓C有公共點,所以,所以,所以,因為直線傾斜角不小于,所以直線傾斜角不小于,所以,化簡得,,因為,所以,所以,,又,因為,所以,所以,所以,所以.故選:B.9、C【解析】由題意,設(shè)等差數(shù)列的公差為,則,故,故,故選10、A【解析】設(shè)出切點,對函數(shù)求導(dǎo)得到切點處的斜率,由點斜式得到切線方程,化簡為,整理得到方程有兩個解即可,解出不等式即可.【詳解】設(shè)切點為,,,則切線方程為:,切線過點代入得:,,即方程有兩個解,則有或.故答案為:A.【點睛】這個題目考查了函數(shù)的導(dǎo)函數(shù)的求法,以及過某一點的切線方程的求法,其中應(yīng)用到導(dǎo)數(shù)的幾何意義,一般過某一點求切線方程的步驟為:一:設(shè)切點,求導(dǎo)并且表示在切點處的斜率;二:根據(jù)點斜式寫切點處的切線方程;三:將所過的點代入切線方程,求出切點坐標(biāo);四:將切點代入切線方程,得到具體的表達(dá)式.11、D【解析】根據(jù)垂直關(guān)系可得,由向量坐標(biāo)運算可構(gòu)造方程求得結(jié)果.【詳解】,,又與互相垂直,,解得:.故選:D.12、A【解析】由等差數(shù)列的定義與等比數(shù)列的性質(zhì)求得首項,然后由等差數(shù)列的前項和公式計算【詳解】因為,,成等比數(shù)列,所以,所以,解得,所以故選:A二、填空題:本題共4小題,每小題5分,共20分。13、證明過程見解析【解析】選①②作條件證明③時,可設(shè)出,結(jié)合的關(guān)系求出,利用是等差數(shù)列可證;也可分別設(shè)出公差,寫出各自的通項公式后利用兩者的關(guān)系,對照系數(shù),得到等量關(guān)系,進(jìn)行證明.選①③作條件證明②時,根據(jù)等差數(shù)列的求和公式表示出,結(jié)合等差數(shù)列定義可證;選②③作條件證明①時,設(shè)出,結(jié)合的關(guān)系求出,根據(jù)可求,然后可證是等差數(shù)列;也可利用前兩項的差求出公差,然后求出通項公式,進(jìn)而證明出結(jié)論.【詳解】選①②作條件證明③:[方法一]:設(shè),則,當(dāng)時,;當(dāng)時,;因為也是等差數(shù)列,所以,解得;所以,,故.[方法二]:設(shè)等差數(shù)列的公差為d,等差數(shù)列的公差為,則,將代入,化簡得對于恒成立則有,解得.所以選①③作條件證明②:因為,是等差數(shù)列,所以公差,所以,即,因為,所以是等差數(shù)列.選②③作條件證明①:[方法一]:設(shè),則,當(dāng)時,;當(dāng)時,;因為,所以,解得或;當(dāng)時,,當(dāng)時,滿足等差數(shù)列的定義,此時為等差數(shù)列;當(dāng)時,,不合題意,舍去.綜上可知為等差數(shù)列.[方法二]【最優(yōu)解】:因為,所以,,因為也為等差數(shù)列,所以公差,所以,故,當(dāng)時,,當(dāng)時,滿足上式,故的通項公式為,所以,,符合題意.【整體點評】這類題型在解答題后可證是等差數(shù)列;法二:利用是等差數(shù)列即前兩項的差求出公差,然后求出的通項公式,利用,求出的通項公式,進(jìn)而證明出結(jié)論.14、【解析】建立空間直角坐標(biāo)系,利用空間向量可以解決問題.【詳解】設(shè),如下圖所示,建立空間直角坐標(biāo)系,,,,,,則所以又因為所以故答案為:15、12【解析】根據(jù)被開方數(shù)的特點求出數(shù)列的通項公式,最后利用通項公式進(jìn)行求解即可.【詳解】數(shù)列中每一項被開方數(shù)分別為:6,10,14,18,22,…,因此這些被開方數(shù)是以6為首項,4為公差的等差數(shù)列,設(shè)該等差數(shù)列為,其通項公式為:,設(shè)數(shù)列為,所以,于是有,故答案為:16、【解析】直線與橢圓相交,求交點,利用列式求解即可.【詳解】聯(lián)立方程得,因為,所以,即,所以,.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2).【解析】(1)連接與交于點O,易得平面,取的中點M,易得為平行四邊形,即,得到平面,然后利用面面垂直的判定定理證明;(2)以A為坐標(biāo)原點,分別為x,y,z軸,建立空間直角坐標(biāo)系,設(shè),根據(jù)與平面所成角為,由,解得,然后分別求得平面的一個法向量,平面的一個法向量,由求解.【詳解】(1)如圖所示:連接與交于點O,因為為正方形,故,又平面,故,由,故平面,取的中點M,連接,注意到為的中位線,故,且,因此,且,故為平行四邊形,即,因此平面,而平面,故平面平面(2)以A坐標(biāo)原點,分別為x,y,z軸,建立空間直角坐標(biāo)系,設(shè),則,由(1)可知平面,因此平面的一個法向量為,而,由與平面所成角為,得,即,解得;則,設(shè)平面的一個法向量為,則得令,則,故設(shè)平面的一個法向量,則得令,則,,故所以,注意到二面角為鈍二面角,故二面角的余弦值為18、(1);(2)【解析】(1)根據(jù)右焦點為F2(3,0),以及,求得a,b,c即可.(2)聯(lián)立,根據(jù)M,N分別為線段AF2,BF2中點,且坐標(biāo)原點O在以MN為直徑的圓上,易得OM⊥ON,則四邊形OMF2N為矩形,從而AF2⊥BF2,然后由0,結(jié)合韋達(dá)定理求解.【詳解】(1)由題意得c=3,,所以.又因為a2=b2+c2,所以b2=3.所以橢圓的方程為.(2)由,得(b2+a2k2)x2-a2b2=0.設(shè)A(x1,y1),B(x2,y2),所以x1+x2=0,x1x2=,依題意易知,OM⊥ON,四邊形OMF2N為矩形,所以AF2⊥BF2.因為(x1-3,y1),(x2-3,y2),所以(x1-3)(x2-3)+y1y2=(1+k2)x1x2+9=0.即,將其整理為k2==-1-.因為<e≤,所以2≤a<3,12≤a2<18.所以k2≥,即k∈【點睛】關(guān)鍵點點睛:本題第二問的關(guān)鍵是由O在以MN為直徑的圓上,即OM⊥ON,得到四邊形OMF2N為矩形,推出AF2⊥BF2,結(jié)合韋達(dá)定理得出斜率k與離心率e的關(guān)系.19、(1)6(2)2【解析】(1)通過作輔助線,利用拋物線定義,結(jié)合梯形的中位線定理,可求得答案;(2)根據(jù)題意可求得直線AB的方程為y=x+4,聯(lián)立拋物線方程,得到根與系數(shù)的關(guān)系,由OA⊥OB,得,根據(jù)數(shù)量積的計算即可得答案.【小問1詳解】取AB的中點為E,當(dāng)p=2時,拋物線為C:x2=4y,焦點F坐標(biāo)為F(0,1),過A,E,B分別作準(zhǔn)線y=-1的垂線,重足分別為I,H,G,在梯形ABGI中(圖1),E是AB中點,則2EH=AI+BG,EH=2-(-1)=3,因為AB=AF+BF=AI+BG,所以AB=2EH=6.【小問2詳解】設(shè),由OD⊥AB交AB于D(-2,2),(圖2),得kOD=-1,kAB=1,則直線AB的方程為y=x+4,由得,所以,由,得,即,即,可得,即,所以p=2.20、(1)1600,(平方米);(2)池底設(shè)計為邊長40米的正方形時總造價最低,最低造價為268800元.【解析】(1)根據(jù)題意,由于修建一個長方體無蓋蓄水池,其容積為4800立方米,深度為3米可得底面積為1600,池壁面積s=.(2)同時池底每平方米的造價為150元,池壁每平方米的造價為120元設(shè)池底長方形長為x米,則可知總造價s=,x=40時,則.故可知當(dāng)x=40時,則有可使得總造價最低,最低造價是268800元.考點:不等式求解最值點評:主要是考查了不等式求解最值的運用,屬于基礎(chǔ)題.21、(1)(2)證明見解析【解析】(1)由圓與軸的交點分別為,可得拋物線的焦點為,從而即可求解;(2)設(shè)直線為,聯(lián)立拋物線方程,由韋達(dá)定理及,求出即可得證.【小問1詳解】解:由題意知,圓與軸的交點分別為,則拋物線的焦點為,所以,所以拋物線方程為;【小問2詳
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 八年級語文競賽試題(附答案)
- 電力檔案培訓(xùn)課件
- DB36T-批而未用土地清數(shù)建庫技術(shù)指南編制說明
- 2024年農(nóng)業(yè)植保員考試成績評估標(biāo)準(zhǔn)試題及答案
- 禽蛋養(yǎng)殖場獸藥質(zhì)量安全技術(shù)
- 2024年模具設(shè)計師考試高效復(fù)習(xí)法試題及答案
- 2024足球裁判員的職場挑戰(zhàn)與試題與答案
- 關(guān)于體育經(jīng)紀(jì)人的職業(yè)規(guī)劃試題及答案
- 提高實戰(zhàn)水平的2024年足球裁判員試題及答案
- 2024年籃球裁判員重要知識試題及答案
- 河南省許昌地區(qū)2024-2025學(xué)年七年級下學(xué)期期中素質(zhì)評估道德與法治試卷(含答案)
- 小學(xué)生勞動課件
- 高二下學(xué)期《家校攜手凝共識齊心協(xié)力創(chuàng)輝煌》家長會
- (二模)滄州市2025屆高三總復(fù)習(xí)質(zhì)量監(jiān)測 生物試卷(含答案詳解)
- 內(nèi)部審計流程試題及答案
- 2025年北師大版七年級數(shù)學(xué)下冊計算題專項訓(xùn)練專題04整式的混合運算與化簡求值(原卷版+解析)
- 2025-2030中國燃料乙醇行業(yè)現(xiàn)狀調(diào)查及投資前景策略分析研究報告
- 2025年人教版七年級下冊英語全冊教學(xué)設(shè)計
- 2025浙江1月卷讀后續(xù)寫及滿分語料10類40句 (真假小偷) 原卷版
- 餐飲合伙協(xié)議合同范本
- 第二單元 人民當(dāng)家作主(B卷 能力提升)2024-2025學(xué)年高中政治統(tǒng)編統(tǒng)編版必修三單元測試AB卷(含解析)
評論
0/150
提交評論