新疆烏魯木齊市沙依巴克區(qū)烏魯木齊四中2025屆高二上數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第1頁
新疆烏魯木齊市沙依巴克區(qū)烏魯木齊四中2025屆高二上數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第2頁
新疆烏魯木齊市沙依巴克區(qū)烏魯木齊四中2025屆高二上數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第3頁
新疆烏魯木齊市沙依巴克區(qū)烏魯木齊四中2025屆高二上數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第4頁
新疆烏魯木齊市沙依巴克區(qū)烏魯木齊四中2025屆高二上數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

新疆烏魯木齊市沙依巴克區(qū)烏魯木齊四中2025屆高二上數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.直線的傾斜角為()A.1 B.-1C. D.2.設(shè)命題,則為A. B.C. D.3.宋元時(shí)期數(shù)學(xué)名著《算學(xué)啟蒙》中有關(guān)于“松竹并生"的問題,松長三尺,竹長一尺,松日自半,竹日自倍,松竹何日而長等,如圖是源于其思想的一個(gè)程序框圖,若輸入的,分別為3,1,則輸出的等于A.5 B.4C.3 D.24.已知F1、F2是雙曲線E:(a>0,b>0)的左、右焦點(diǎn),過F1的直線與雙曲線左、右兩支分別交于點(diǎn)P、Q.若,M為PQ的中點(diǎn),且,則雙曲線的離心率為()A. B.C. D.5.若函數(shù)在上為單調(diào)增函數(shù),則m的取值范圍()A. B.C. D.6.已知函數(shù),若對任意兩個(gè)不等的正數(shù),,都有恒成立,則a的取值范圍為()A. B.C. D.7.在如圖所示的棱長為1的正方體中,點(diǎn)P在側(cè)面所在的平面上運(yùn)動(dòng),則下列四個(gè)命題中真命題的個(gè)數(shù)是()①若點(diǎn)P總滿足,則動(dòng)點(diǎn)P的軌跡是一條直線②若點(diǎn)P到點(diǎn)A的距離為,則動(dòng)點(diǎn)P的軌跡是一個(gè)周長為的圓③若點(diǎn)P到直線AB的距離與到點(diǎn)C的距離之和為1,則動(dòng)點(diǎn)P的軌跡是橢圓④若點(diǎn)P到平面的距離與到直線CD的距離相等,則動(dòng)點(diǎn)P的軌跡是拋物線A.1 B.2C.3 D.48.已知f(x)為R上的可導(dǎo)函數(shù),其導(dǎo)函數(shù)為,且對于任意的x∈R,均有,則()A.e-2021f(-2021)>f(0),e2021f(2021)<f(0) B.e-2021f(-2021)<f(0),e2021f(2021)<f(0)C.e-2021f(-2021)>f(0),e2021f(2021)>f(0) D.e-2021f(-2021)<f(0),e2021f(2021)>f(0)9.若直線與平行,則實(shí)數(shù)m等于()A.1 B.C.4 D.010.過雙曲線右焦點(diǎn)F作雙曲線一條漸近線的垂線,垂足為A,與另一條漸近線交于點(diǎn)B,若,則雙曲線C的離心率為()A.或 B.2或C.或 D.2或11.如圖,在四面體OABC中,,,,點(diǎn)在線段上,且,為的中點(diǎn),則等于()A. B.C. D.12.若關(guān)于一元二次不等式的解集為,則實(shí)數(shù)的取值范圍是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,一個(gè)小球從10m高處自由落下,每次著地后又彈回到原來高度的,若已知小球經(jīng)過的路程為,則小球落地的次數(shù)為______14.命題“”的否定為_____________.15.向量,,若,且,則的值為______.16.已知雙曲線的右焦點(diǎn)為,過點(diǎn)作軸的垂線,在第一象限與雙曲線及其漸近線分別交于,兩點(diǎn).若,則雙曲線的離心率為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),為自然對數(shù)的底數(shù).(1)當(dāng)時(shí),證明,,;(2)若函數(shù)在上存在極值點(diǎn),求實(shí)數(shù)的取值范圍.18.(12分)已知函數(shù)f(x)=(1)求函數(shù)f(x)在x=1處的切線方程;(2)求證:19.(12分)已知直線l經(jīng)過兩條直線2x﹣y﹣3=0和4x﹣3y﹣5=0的交點(diǎn),且與直線x+y﹣2=0垂直(1)求直線l的方程;(2)若圓C過點(diǎn)(1,0),且圓心在x軸的正半軸上,直線l被該圓所截得的弦長為,求圓C的標(biāo)準(zhǔn)方程20.(12分)設(shè)數(shù)列的前項(xiàng)和為,為等比數(shù)列,且,(1)求數(shù)列和的通項(xiàng)公式;(2)設(shè),求數(shù)列的前項(xiàng)和21.(12分)設(shè),分別是橢圓()的左、右焦點(diǎn),E的離心率為.短軸長為2.(1)求橢圓E的方程:(2)過點(diǎn)的直線l交橢圓E于A,B兩點(diǎn),是否存在實(shí)數(shù)t,使得恒成立?若存在,求出t的值;若不存在,說明理由.22.(10分)已知函數(shù)在處有極值.(1)求的值;(2)求函數(shù)在上的最大值與最小值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】根據(jù)直線斜率的定義即可求解.【詳解】,斜率為1,則傾斜角為.故選:C.2、C【解析】特稱命題的否定為全稱命題,所以命題的否命題應(yīng)該為,即本題的正確選項(xiàng)為C.3、B【解析】由已知中的程序框圖可知:該程序的功能是利用循環(huán)結(jié)構(gòu)計(jì)算并輸出變量S的值,模擬程序的運(yùn)行過程,分析循環(huán)中各變量值的變化情況,可得答案【詳解】解:當(dāng)n=1時(shí),a=3,b=2,滿足進(jìn)行循環(huán)的條件,當(dāng)n=2時(shí),a,b=4,滿足進(jìn)行循環(huán)的條件,當(dāng)n=3時(shí),a,b=8,滿足進(jìn)行循環(huán)的條件,當(dāng)n=4時(shí),a,b=16,不滿足進(jìn)行循環(huán)的條件,故輸出的n值為4,故選:B【點(diǎn)睛】本題考查的知識(shí)點(diǎn)是程序框圖,當(dāng)循環(huán)的次數(shù)不多,或有規(guī)律時(shí),常采用模擬循環(huán)的方法解答4、D【解析】由題干條件得到,設(shè)出,利用雙曲線定義表達(dá)出其他邊長,得到方程,求出,從而得到,,利用勾股定理求出的關(guān)系,求出離心率.【詳解】因?yàn)镸為PQ的中點(diǎn),且,所以△為等腰三角形,即,因?yàn)?,設(shè),則,由雙曲線定義可知:,所以,則,又,所以,解得:,由勾股定理得:,其中,在三角形中,由勾股定理得:,即,解得:故選:D5、B【解析】用函數(shù)單調(diào)性確定參數(shù),使用參數(shù)分離法即可.【詳解】,在上是增函數(shù),即恒成立,;設(shè),;∴時(shí),是增函數(shù);時(shí),是減函數(shù);故時(shí),,∴;故選:B.6、A【解析】將已知條件轉(zhuǎn)化為時(shí)恒成立,利用參數(shù)分離的方法求出a的取值范圍【詳解】對任意都有恒成立,則時(shí),,當(dāng)時(shí)恒成立,

,當(dāng)時(shí)恒成立,,故選:A7、C【解析】根據(jù)線面關(guān)系、距離關(guān)系可分別對每一個(gè)命題判斷.【詳解】若點(diǎn)P總滿足,又,,,可得對角面,因此點(diǎn)P的軌跡是直線,故①正確若點(diǎn)P到點(diǎn)A的距離為,則動(dòng)點(diǎn)P的軌跡是以點(diǎn)B為圓心,以1為半徑的圓(在平面內(nèi)),因此圓的周長為,故②正確點(diǎn)P到直線AB的距離PB與到點(diǎn)C的距離PC之和為1,又,則動(dòng)點(diǎn)P的軌跡是線段BC,因此③不正確點(diǎn)P到平面的距離(即到直線的距離)與到直線CD的距離(即到點(diǎn)C的距離)相等,則動(dòng)點(diǎn)P的軌跡是以線段BC的中點(diǎn)為頂點(diǎn),直線BC為對稱軸的拋物線(在平面內(nèi)),因此④正確故有①②④三個(gè)故選:C8、D【解析】通過構(gòu)造函數(shù)法,結(jié)合導(dǎo)數(shù)確定正確答案.【詳解】構(gòu)造函數(shù),所以在上遞增,所以,即.故選:D9、B【解析】兩直線平行的充要條件【詳解】由于,則,.故選:B10、D【解析】求得點(diǎn)A,B的坐標(biāo),利用轉(zhuǎn)化為坐標(biāo)比求解.【詳解】不妨設(shè)直線,由題意得,解得,即;由得,即,因?yàn)?,所以,所以?dāng)時(shí),,;當(dāng)時(shí),,則,故選:D11、D【解析】利用空間向量的加法與減法可得出關(guān)于、、的表達(dá)式.【詳解】.故選:D.12、B【解析】結(jié)合判別式求得的取值范圍.【詳解】由于關(guān)于的一元二次不等式的解集為,所以,解得,所以實(shí)數(shù)的取值范圍是.故選:B二、填空題:本題共4小題,每小題5分,共20分。13、4【解析】設(shè)小球從第(n-1)次落地到第n次落地時(shí)經(jīng)過的路程為m,則由已知可得數(shù)列是從第2項(xiàng)開始以首項(xiàng)為,公比為的等比數(shù)列,根據(jù)等比數(shù)列的通項(xiàng)公式求得,再設(shè)設(shè)小球第n次落地時(shí),經(jīng)過的路程為,由等比數(shù)列的求和公式建立方程求解即可.【詳解】解:設(shè)小球從第(n-1)次落地到第n次落地時(shí)經(jīng)過的路程為m,則當(dāng)時(shí),得出遞推關(guān)系,所以數(shù)列是從第2項(xiàng)開始以首項(xiàng)為,公比為的等比數(shù)列,所以,且,設(shè)小球第n次落地時(shí),經(jīng)過的路程為,所以,所以,解得,故答案為:4.14、【解析】根據(jù)特稱命題的否定是全稱命題,可得結(jié)果.【詳解】由特稱命題否定是全稱命題,故條件不變,否定結(jié)論所以“”的否定為“”故答案為:【點(diǎn)睛】本題主要考查特稱命題的否定是全稱命題,屬基礎(chǔ)題.15、【解析】根據(jù)可求出,再根據(jù)向量垂直即可求出,即可得出答案.【詳解】因?yàn)椋?,所以,解得,又因?yàn)?,所以,解得,所?故答案為:.16、【解析】按題意求得,兩點(diǎn)坐標(biāo),以代數(shù)式表達(dá)出條件,即可得到關(guān)于的關(guān)系式,進(jìn)而解得雙曲線的離心率.【詳解】雙曲線的右焦點(diǎn)為,其漸近線為,垂線方程為,則,,,由,得,即即,則,離心率故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析:(2)【解析】(1)代入,求導(dǎo)分析函數(shù)單調(diào)性,再的最小值即可證明.(2),若函數(shù)在上存在兩個(gè)極值點(diǎn),則在上有根.再分,與,利用函數(shù)的零點(diǎn)存在定理討論導(dǎo)函數(shù)的零點(diǎn)即可.【詳解】(1)證明:當(dāng)時(shí),,則,當(dāng)時(shí),,則,又因?yàn)?所以當(dāng)時(shí),,僅時(shí),,所以在上是單調(diào)遞減,所以,即.(2),因?yàn)?所以,①當(dāng)時(shí),恒成立,所以在上單調(diào)遞增,沒有極值點(diǎn).②當(dāng)時(shí),在區(qū)間上單調(diào)遞增,因?yàn)?當(dāng)時(shí),,所以在上單調(diào)遞減,沒有極值點(diǎn).當(dāng)時(shí),,所以存在,使當(dāng)時(shí),時(shí),所以在處取得極小值,為極小值點(diǎn).綜上可知,若函數(shù)在上存在極值點(diǎn),則實(shí)數(shù).【點(diǎn)睛】本題主要考查了利用導(dǎo)函數(shù)求解函數(shù)的單調(diào)性與最值,進(jìn)而證明不等式的方法.同時(shí)也考查了利用導(dǎo)數(shù)分析函數(shù)極值點(diǎn)的問題,需要結(jié)合零點(diǎn)存在定理求解.屬于難題.18、(1)y=5x-1;(2)證明見解析【解析】(1)求出導(dǎo)函數(shù),求出切線的斜率,切點(diǎn)坐標(biāo),然后求切線方程(2)不等式化簡為.設(shè),求出導(dǎo)函數(shù),判斷函數(shù)的單調(diào)性求解函數(shù)的最值,然后證明即可【詳解】解:(1)的定義域?yàn)椋膶?dǎo)數(shù)由(1)可得,則切點(diǎn)坐標(biāo)為,所求切線方程為(2)證明:即證.設(shè),則,由,得當(dāng)時(shí),;當(dāng)時(shí),在上單調(diào)遞增,在上單調(diào)遞減,(1),即不等式成立,則原不等式成立19、(1)(2)【解析】(1)先求得直線和直線的交點(diǎn)坐標(biāo),再用點(diǎn)斜式求得直線的方程.(2)設(shè)圓的標(biāo)準(zhǔn)方程為,根據(jù)已知條件列方程組,求得,由此求得圓的標(biāo)準(zhǔn)方程.【小問1詳解】.直線的斜率為,所以直線的斜率為,所以直線的方程為.【小問2詳解】設(shè)圓的標(biāo)準(zhǔn)方程為,則,所以圓的標(biāo)準(zhǔn)方程為.20、(1),;(2)【解析】(1)由已知利用遞推公式,可得,代入分別可求數(shù)列的首項(xiàng),公比,從而可求.(2)由(1)可得,利用乘“公比”錯(cuò)位相減法求和【詳解】解:(1)當(dāng)時(shí),,當(dāng)時(shí),滿足上式,故的通項(xiàng)式為設(shè)的公比為,由已知條件知,,,所以,,即(2),兩式相減得:【點(diǎn)睛】本題考查等差數(shù)列、等比數(shù)列的求法,錯(cuò)位相減法求數(shù)列通項(xiàng),屬于中檔題.21、(1)(2)存在,【解析】(1)由條件列出,,的方程,解方程求出,,,由此可得橢圓E的方程:(2)當(dāng)直線的斜率存在時(shí),設(shè)直線的方程為,聯(lián)立直線的方程與橢圓方程化簡可得,設(shè),,可得,,由此證明,再證明當(dāng)直線的斜率不存在時(shí)也成立,由此確定存在實(shí)數(shù)t,使得恒成立【小問1詳解】由已知得,離心率,所以,故橢圓E的方程為.【小問2詳解】當(dāng)直線l的斜率存在時(shí),設(shè),,,聯(lián)立方程組得,,所以,..,,所以.所以.當(dāng)直線l的斜率不存在時(shí),,聯(lián)立方程組,得,.,,所以.綜上,存在實(shí)數(shù)使得恒成立.【點(diǎn)睛】(1)解答直線與橢圓的題目時(shí),時(shí)常把兩個(gè)曲線的方程聯(lián)立,消去x(或y)建立一元二次方程,然后借助根與系數(shù)的關(guān)系,并結(jié)合題設(shè)條件建立有關(guān)參變量的等量關(guān)系(2)涉及到直線方程的設(shè)法時(shí),務(wù)必考慮全面,不要忽略直線斜率為0或不存在等特殊情形.22、(1),;(2)最大值為,最小值為【解析】(1)對函數(shù)求導(dǎo),根據(jù)函數(shù)在處取極值得出,再由極值為,得出,構(gòu)造一個(gè)關(guān)于的二元一次方程組,便可解出的值;(2)由(1)可知,求出,利

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論