2025屆重慶市開縣陳家中學高二上數(shù)學期末學業(yè)水平測試試題含解析_第1頁
2025屆重慶市開縣陳家中學高二上數(shù)學期末學業(yè)水平測試試題含解析_第2頁
2025屆重慶市開縣陳家中學高二上數(shù)學期末學業(yè)水平測試試題含解析_第3頁
2025屆重慶市開縣陳家中學高二上數(shù)學期末學業(yè)水平測試試題含解析_第4頁
2025屆重慶市開縣陳家中學高二上數(shù)學期末學業(yè)水平測試試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2025屆重慶市開縣陳家中學高二上數(shù)學期末學業(yè)水平測試試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設(shè)為橢圓上一點,,為左、右焦點,且,則()A.為銳角三角形 B.為鈍角三角形C.為直角三角形 D.,,三點構(gòu)不成三角形2.在公比為的等比數(shù)列中,前項和,則()A.1 B.2C.3 D.43.在三棱柱中,,,,則這個三棱柱的高()A1 B.C. D.4.已知數(shù)列是等比數(shù)列,,是函數(shù)的兩個不同零點,則等于()A. B.C.14 D.165.南宋數(shù)學家楊輝在《詳解九章算法》和《算法通變本末》中,提出了一些新的垛積公式,他所討論的高階等差數(shù)列與一般等差數(shù)列不同,前后兩項之差并不相等,而是逐項差數(shù)之差或者高次差相等.對這類高階等差數(shù)列的研究,在楊輝之后一般稱為“垛積術(shù)”.現(xiàn)有一個高階等差數(shù)列,其前7項分別為1,5,11,21,37,61,95,則該數(shù)列的第8項為()A.99 B.131C.139 D.1416.拋物線有如下光學性質(zhì):平行于拋物線對稱軸的入射光線經(jīng)拋物線反射后必過拋物線的焦點.已知拋物線的焦點為F,一條平行于y軸的光線從點射出,經(jīng)過拋物線上的點A反射后,再經(jīng)拋物線上的另一點B射出,則經(jīng)點B反射后的反射光線必過點()A. B.C. D.7.空間直角坐標系中、、)、,其中,,,,已知平面平面,則平面與平面間的距離為()A. B.C. D.8.直線分別交坐標軸于A,B兩點,O為坐標原點,三角形OAB的內(nèi)切圓上有動點P,則的最小值為()A.16 B.18C.20 D.229.拋物線y=4x2的焦點坐標是()A.(0,1) B.(1,0)C. D.10.已知,若,是第二象限角,則=()A. B.5C. D.1011.在遞增等比數(shù)列中,為其前n項和.已知,,且,則數(shù)列的公比為()A.3 B.4C.5 D.612.若復(fù)數(shù)滿足,則復(fù)平面內(nèi)表示的點位于()A.第一象限 B.第二象限C.第三象限 D.第四象限二、填空題:本題共4小題,每小題5分,共20分。13.已知為坐標原點,等軸雙曲線的右焦點為,點在雙曲線上,由向雙曲線的漸近線作垂線,垂足分別為、,則四邊形的面積為______.14.已知函數(shù),若關(guān)于的不等式恒成立,則實數(shù)的取值范圍是__________15.命題“x≥1,x2-2x+4≥0”的否定為____________.16.已知命題:方程表示焦點在軸上的橢圓;命題:方程表示雙曲線.若為真,則實數(shù)的取值范圍為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖是一拋物線型機械模具的示意圖,該模具是拋物線的一部分且以拋物線的軸為對稱軸,已知頂點深度4cm,口徑長為12cm(1)以頂點為坐標原點建立平面直角坐標系(如圖),求該拋物線的標準方程;(2)為滿足生產(chǎn)的要求,需將磨具的頂點深度減少1cm,求此時該磨具的口徑長18.(12分)已知三棱柱中,.(1)求證:平面平面.(2)若,在線段上是否存在一點使平面和平面所成角的余弦值為若存在,確定點的位置;若不存在,說明理由.19.(12分)在平面直角坐標系中,已知點,,過點的動直線與過點的動直線的交點為P,,的斜率均存在且乘積為,設(shè)動點Р的軌跡為曲線C.(1)求曲線C的方程;(2)若點M在曲線C上,過點M且垂直于OM的直線交C于另一點N,點M關(guān)于原點O的對稱點為Q.直線NQ交x軸于點T,求的最大值.20.(12分)已知在等差數(shù)列中,,(1)求數(shù)列的通項公式;(2)若的前n項和為,且,,求數(shù)列的前n項和21.(12分)已知雙曲線,拋物線的焦點與雙曲線的一個焦點相同,點為拋物線上一點.(1)求雙曲線的焦點坐標;(2)若點到拋物線的焦點的距離是5,求的值.22.(10分)已知圓C:,圓C與x軸交于A,B兩點(1)求直線y=x被圓C所截得的弦長;(2)圓M過點A,B,且圓心在直線y=x+1上,求圓M的方程

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】根據(jù)橢圓方程求出,然后結(jié)合橢圓定義和已知條件求出并求出,進而判斷答案.【詳解】由題意可知,,由橢圓的定義可知,而,聯(lián)立方程解得,且,則6+2=8,即不構(gòu)成三角形.故選:D.2、C【解析】先利用和的關(guān)系求出和,再求其公比.【詳解】由,得,,所以,,則.故選:C.3、D【解析】先求出平面ABC的法向量,然后將高看作為向量在平面ABC的法向量上的投影的絕對值,則答案可求.【詳解】設(shè)平面ABC的法向量為,而,,則,即有,不妨令,則,故,設(shè)三棱柱的高為h,則,故選:D.4、C【解析】根據(jù)等比數(shù)列的性質(zhì)求得正確答案.【詳解】是函數(shù)的兩個不同零點,所以,由于數(shù)列是等比數(shù)列,所以.故選:C5、D【解析】根據(jù)題中所給高階等差數(shù)列定義,找出其一般規(guī)律即可求解.【詳解】設(shè)該高階等差數(shù)列的第8項為,根據(jù)所給定義,用數(shù)列的后一項減去前一項得到一個數(shù)列,得到的數(shù)列也用后一項減去前一項得到一個數(shù)列,即得到了一個等差數(shù)列,如圖:由圖可得,則.故選:D6、D【解析】求出、坐標可得直線的方程,與拋物線方程聯(lián)立求出,根據(jù)選項可得答案,【詳解】把代入得,所以,所以直線的方程為即,與拋物線方程聯(lián)立解得,所以,因為反射光線平行于y軸,根據(jù)選項可得D正確,故選:D7、A【解析】由已知得,,,設(shè)向量與向量、都垂直,由向量垂直的坐標運算可求得,再由平面平行和距離公式計算可得選項.【詳解】解:由已知得,,,設(shè)向量與向量、都垂直,則,即,取,,又平面平面,則平面與平面間的距離為,故選:A.8、B【解析】由題意,求出內(nèi)切圓的半徑和圓心坐標,設(shè),則,由表示內(nèi)切圓上的動點P到定點的距離的平方,從而即可求解最小值.【詳解】解:因為直線分別交坐標軸于A,B兩點,所以設(shè),則,因為,所以三角形OAB的內(nèi)切圓半徑,內(nèi)切圓圓心為,所以內(nèi)切圓的方程為,設(shè),則,因為表示內(nèi)切圓上的動點P到定點的距離的平方,且在內(nèi)切圓內(nèi),所以,所以,,即的最小值為18,故選:B.9、C【解析】將拋物線方程化為標準方程,由此可拋物線的焦點坐標得選項.【詳解】解:將拋物線y=4x2的化為標準方程為x2=y(tǒng),p=,開口向上,焦點在y軸的正半軸上,故焦點坐標為(0,).故選:C10、D【解析】先由誘導公式及同角函數(shù)關(guān)系得到,再根據(jù)誘導公式化簡,最后由二倍角公式化簡求值即可.【詳解】∵,∴,∵是第二象限角,∴,∴故選:D11、B【解析】由已知結(jié)合等比數(shù)列的性質(zhì)可求出、,然后結(jié)合等比數(shù)列的求和公式求解即可.【詳解】解:由題意得:是遞增等比數(shù)列又,,故故選:B12、A【解析】根據(jù)復(fù)數(shù)的運算法則,求得,結(jié)合復(fù)數(shù)的幾何意義,即可求解.【詳解】由題意,復(fù)數(shù)滿足,可得,所以復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點的坐標為,位于第一象限.故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、##【解析】求出雙曲線的方程,可求得雙曲線的兩條漸近線方程,分析可知四邊形為矩形,然后利用點到直線的距離公式以及矩形的面積公式可求得結(jié)果.【詳解】因為雙曲線為等軸雙曲線,則,,可得,所以,雙曲線的方程為,雙曲線的漸近線方程為,則雙曲線的兩條漸近線互相垂直,則,,,所以,四邊形為矩形,設(shè)點,則,不妨設(shè)點為直線上的點,則,,所以,.故答案為:.14、【解析】分析:應(yīng)用換元法,令,,不等式恒成立,轉(zhuǎn)化為在恒成立,確定關(guān)系式,即可求得答案.詳解:函數(shù)對稱軸,最小值令,則恒成立,即在上.,在單調(diào)遞增,,解得,即實數(shù)的取值范圍是故答案為.點睛:本題考查了函數(shù)的單調(diào)性、最值問題、不等式恒成立問題以及二次函數(shù)的圖象和性質(zhì)等知識,考查了復(fù)合函數(shù)問題求解的換元法15、【解析】根據(jù)還有一個量詞的命題的否定的方法解答即可.【詳解】命題“x≥1,x2-2x+4≥0”的否定為“”.故答案為:.16、【解析】既然為真,那么就是為真,即p是假,并且q是真,根據(jù)橢圓和雙曲線的定義即可解出?!驹斀狻俊邽檎?,∴p為假,q為真;考慮p為真的情況:解得……①;由于p為假,∴或;由于q為真,∴,即……②;由①和②得:;故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)cm【解析】(1)設(shè)拋物線的標準方程為,由題意可得拋物線過點,將此點代入方程中可求出的值,從而可得拋物線方程,(2)設(shè)此時的口徑長為,則拋物線過點,代入拋物線方程可求出的值,從而可求得答案【小問1詳解】由題意,建立如圖所示的平面直角坐標系,設(shè)拋物線的標準方程為,因為頂點深度4,口徑長為12,所以該拋物線過點,所以,得,所以拋物線方程為;【小問2詳解】若將磨具的頂點深度減少,設(shè)此時的口徑長為,則可得,得,所以此時該磨具的口徑長18、(1)證明見解析;(2)在線段上存在一點,且P是靠近C的四等分點.【解析】(1)連接,根據(jù)給定條件證明平面得即可推理作答.(2)在平面內(nèi)過C作,再以C為原點,射線CA,CB,Cz分別為x,y,z軸正半軸建立空間直角坐標系,利用空間向量計算判斷作答.【小問1詳解】在三棱柱中,四邊形是平行四邊形,而,則是菱形,連接,如圖,則有,因,,平面,于是得平面,而平面,則,由得,,平面,從而得平面,又平面,所以平面平面.【小問2詳解】在平面內(nèi)過C作,由(1)知平面平面,平面平面,則平面,以C為原點,射線CA,CB,Cz分別為x,y,z軸正半軸建立空間直角坐標系,如圖,因,,則,假設(shè)在線段上存在符合要求的點P,設(shè)其坐標為,則有,設(shè)平面的一個法向量,則有,令得,而平面的一個法向量,依題意,,化簡整理得:而,解得,所以在線段上存在一點,且P是靠近C的四等分點,使平面和平面所成角的余弦值為.19、(1)(2)【解析】(1)設(shè)點坐標為,根據(jù)兩直線的斜率之積為得到方程,整理即可;(2)設(shè),,,根據(jù)設(shè)、在橢圓上,則,再由,則,即可表示出直線、的方程,聯(lián)立兩直線方程,即可得到點的縱坐標,再根據(jù)弦長公式得到,令,則,最后利用基本不等式計算可得;【小問1詳解】解:設(shè)點坐標為,定點,,直線與直線的斜率之積為,,【小問2詳解】解:設(shè),,,則,,所以又,所以,又即,則直線:,直線:,由,解得,即,所以令,則,所以因為,當且僅當即時取等號,所以的最大值為;20、(1);(2).【解析】(1)根據(jù)給定條件求出數(shù)列的公差即可求解作答.(2)由已知條件求出數(shù)列的通項,再利用錯位相減法計算作答.【小問1詳解】等差數(shù)列中,,解得,則公差,所以數(shù)列的通項公式為:.【小問2詳解】的前n項和為,,,則當時,,于是得,即,而,即,,因此,數(shù)列是首項為2,公比為2的等比數(shù)列,,由(1)知,,則,因此,,,所以數(shù)列的前n項和.21、(1);(2).【解析】(1)根據(jù)雙曲線的方程求出即得雙曲線的焦點坐標;(2)先求出的值,再解方程得解.【詳解】(1)因為雙曲線的方程為,所以.所以.所以.所以雙曲線的焦點坐標分別為.(2)因為拋物線的焦點與雙曲線的一個焦點相同,所以拋物線的焦點坐標是(2,0),所以.因為點為拋物線上一點,所以點到拋物線的焦點的距離等于點到拋物線的準線的距離.因為點到拋物線的焦點的距離是5,即,所以.【點睛】本題主要考查雙曲線的焦點坐標的求法,考查拋物線的定義和幾何性質(zhì),意在考查學生對這些知識的理解掌握水平.22、(1);(2).【解析】(1)根據(jù)已知條件,結(jié)合垂徑定理,以及點到直線的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論