![2025屆北京市中央美術學院附屬實驗學校高二數(shù)學第一學期期末考試試題含解析_第1頁](http://file4.renrendoc.com/view12/M01/30/34/wKhkGWcdPUOABwWYAAGknrqA1sM231.jpg)
![2025屆北京市中央美術學院附屬實驗學校高二數(shù)學第一學期期末考試試題含解析_第2頁](http://file4.renrendoc.com/view12/M01/30/34/wKhkGWcdPUOABwWYAAGknrqA1sM2312.jpg)
![2025屆北京市中央美術學院附屬實驗學校高二數(shù)學第一學期期末考試試題含解析_第3頁](http://file4.renrendoc.com/view12/M01/30/34/wKhkGWcdPUOABwWYAAGknrqA1sM2313.jpg)
![2025屆北京市中央美術學院附屬實驗學校高二數(shù)學第一學期期末考試試題含解析_第4頁](http://file4.renrendoc.com/view12/M01/30/34/wKhkGWcdPUOABwWYAAGknrqA1sM2314.jpg)
![2025屆北京市中央美術學院附屬實驗學校高二數(shù)學第一學期期末考試試題含解析_第5頁](http://file4.renrendoc.com/view12/M01/30/34/wKhkGWcdPUOABwWYAAGknrqA1sM2315.jpg)
版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2025屆北京市中央美術學院附屬實驗學校高二數(shù)學第一學期期末考試試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知正項等比數(shù)列的前項和為,且,則的最小值為()A. B.C. D.2.若x,y滿足約束條件,則的最大值為()A.1 B.0C.?1 D.?33.已知曲線,則曲線W上的點到原點距離的最小值是()A. B.C. D.4.設雙曲線的實軸長為8,一條漸近線為,則雙曲線的方程為()A. B.C. D.5.已知向量,,且與互相垂直,則()A. B.C. D.6.某程序框圖如圖所示,該程序運行后輸出的值是()A. B.C. D.7.為了了解1200名學生對學校某項教改實驗的意見,打算從中抽取一個容量為40的樣本,采用系統(tǒng)抽樣方法,則分段的間隔為()A.40 B.30C.20 D.128.如圖所示,直三棱柱中,,,分別是,的中點,,則與所成角的余弦值為()A. B.C. D.9.若,則()A.22 B.19C.-20 D.-1910.圓C:的圓心坐標和半徑分別為()A.和4 B.(-3,2)和4C.和 D.和11.如圖,在四面體中,,分別是,的中點,則()A. B.C. D.12.若公差不為0的等差數(shù)列的前n項和是,,且,,為等比數(shù)列,則使成立的最大n是()A.6 B.10C.11 D.12二、填空題:本題共4小題,每小題5分,共20分。13.古希臘著名數(shù)學家阿波羅尼斯與歐幾里得、阿基米德齊名.他發(fā)現(xiàn):“平面內(nèi)到兩個定點A、B的距離之比為定值(且)的點的軌跡是圓”.后來人們將這個圓以他的名字命名,稱為阿波羅尼斯圓,簡稱阿氏圓,在平面直角坐標系中,,,點滿足,則點P的軌跡方程為__________.(答案寫成標準方程),的最小值為___________.14.當為任意實數(shù)時,直線恒過定點,則以點C為圓心,半徑為圓的標準方程______15.在空間直角坐標系Oxyz中,點在x,y,z軸上的射影分別為A,B,C,則四面體PABC的體積為______________.16.在等比數(shù)列中,已知,則__________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知圓C的圓心在直線上,且過點,(1)求圓C的方程;(2)若圓C與直線交于A,B兩點,______,求m的值從下列三個條件中任選一個補充在上面問題中并作答:條件①:;條件②:圓上一點P到直線的最大距離為;條件③:18.(12分)如圖1是,,,,分別是邊,上兩點,且,將沿折起使得,如圖2.(1)證明:圖2中,平面;(2)圖2中,求二面角的正切值.19.(12分)設函數(shù).(1)求在處的切線方程;(2)求的極小值點和極大值點.20.(12分)已知為等差數(shù)列,前n項和為,數(shù)列是首項為1的等比數(shù)列,,,.(1)求和的通項公式;(2)求數(shù)列的前n項和.21.(12分)如圖,在四棱錐中,底面為正方形,底面,,為棱的中點.(1)求直線與所成角的余弦值;(2)求直線與平面所成角的正弦值;(3)求二面角的余弦值.22.(10分)已知圓C:,圓C與x軸交于A,B兩點(1)求直線y=x被圓C所截得的弦長;(2)圓M過點A,B,且圓心在直線y=x+1上,求圓M的方程
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】設等比數(shù)列的公比為,則,由可得,可得出,利用基本不等式可求得結果.【詳解】設等比數(shù)列的公比為,則,因為,則,所以,,則,當且僅當時,等號成立.故選:B.2、B【解析】先畫出可行域,由,得,作出直線,過點時,取得最大值,求出點的坐標代入目標函數(shù)中可得答案【詳解】不等式組表示的可行域如圖所示,由,得,作出直線,過點時,取得最大值,由,得,即,所以的最大值為,故選:B3、A【解析】化簡方程,得到,求出的范圍,作出曲線的圖形,通過圖象觀察,即可得到原點距離的最小值詳解】解:即為,兩邊平方,可得,即有,則作出曲線的圖形,如下:則點與點或的距離最小,且為故選:A4、D【解析】雙曲線的實軸長為,漸近線方程為,代入解析式即可得到結果.【詳解】雙曲線的實軸長為8,即,,漸近線方程為,進而得到雙曲線方程為.故選:D.5、D【解析】根據(jù)垂直關系可得,由向量坐標運算可構造方程求得結果.【詳解】,,又與互相垂直,,解得:.故選:D.6、B【解析】模擬程序運行后,可得到輸出結果,利用裂項相消法即可求出答案.【詳解】模擬程序運行過程如下:0),判斷為否,進入循環(huán)結構,1),判斷為否,進入循環(huán)結構,2),判斷為否,進入循環(huán)結構,3),判斷為否,進入循環(huán)結構,……9),判斷為否,進入循環(huán)結構,10),判斷為是,故輸出,故選:B.【點睛】本題主要考查程序框圖,考查裂項相消法,難度不大.一般遇見程序框圖求輸出結果時,常模擬程序運行以得到結論.7、B【解析】根據(jù)系統(tǒng)抽樣的概念,以及抽樣距的求法,可得結果.【詳解】由總數(shù)為1200,樣本容量為40,所以抽樣距為:故選:B【點睛】本題考查系統(tǒng)抽樣的概念,屬基礎題.8、A【解析】取的中點為,的中點為,然后可得或其補角即為與所成角,然后在中求出答案即可.【詳解】取的中點為,的中點為,,,所以或其補角即為與所成角,設,則,,在,,故選:A9、C【解析】將所求進行變形可得,根據(jù)二項式定理展開式,即可求得答案.【詳解】由題意得所以.故選:C10、C【解析】先將方程化為一般形式,再根據(jù)公式計算求解即可.【詳解】解:可化為,由圓心為,半徑,易知圓心的坐標為,半徑為故選:C11、A【解析】利用向量的加法法則直接求解.【詳解】在四面體中,,分別是,的中點,故選:A12、C【解析】設等差數(shù)列的公差為d,根據(jù),且,,為等比數(shù)列,求得首項和公差,再利用前n項和公式求解.【詳解】設等差數(shù)列的公差為d,因為,且,,為等比數(shù)列,所以,解得或(舍去),則,所以,解得,所以使成立的最大n是11,故選:C二、填空題:本題共4小題,每小題5分,共20分。13、①.②.【解析】設點P坐標,然后用直接法可求;根據(jù)軌跡方程和數(shù)量積的坐標表示對化簡,結合軌跡方程可得x的范圍,然后可解.【詳解】設P點坐標為,則由,得,化簡得,即.因為,所以因為點P在圓上,故所以,故的最小值為.故答案為:,14、【解析】先求得直線過的定點C,再寫出圓的標準方程.【詳解】直線可化為,則,解得,所以直線恒過定點,所以以點C為圓心,半徑為圓的標準方程是,故答案為:15、2【解析】將物體放入長方體中,切割處理求得體積.【詳解】如圖所示:四面體PABC可以看成以1,2,3為棱長的長方體切去四個全等的三棱錐,所以四面體PABC的體積為.故答案為:216、32【解析】根據(jù)已知求出公比即可求出答案.【詳解】設等比數(shù)列的公比為,則,則,所以.故答案為:32.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)根據(jù)圓心在過點,的線段的中垂線上,同時圓心圓心在直線上,可求出圓心的坐標,進而求得半徑,最后求出其標準方程;(2)選①利用用垂徑定理可求得答案,選②根據(jù)圓上一點P到直線的最大距離為可求得答案,選③先利用向量的數(shù)量積可求得,解法就和選①時相同.【小問1詳解】由題意可知,圓心在點的中垂線上,該中垂線的方程為,于是,由,解得圓心,圓C的半徑所以,圓C的方程為;【小問2詳解】①,因為,,所以圓心C到直線l的距離,則,解得,②,圓上一點P到直線的最大距離為,可知圓心C到直線l的距離則,解得,③,因為,所以,得,又,所以圓心C到直線l的距離,則,解得18、(1)證明見解析(2)【解析】(1)、利用線面垂直的判定,及線面垂直的性質(zhì)即可證明;(2)、建立空間直角坐標系,分別求出平面、平面的法向量,利用求出兩平面所成角的余弦值,進而求出求二面角的正切值.【小問1詳解】由已知得:,平面,又平面,在中,,由余弦定理得:,,即,平面.【小問2詳解】由(1)知:平面,以為坐標原點,建立如圖所示的空間直角坐標系,則,,,設平面的法向量為,平面的法向量為,則與,即與,..,觀察可知二面角為鈍二面角,二面角的正切值為.19、(1);(2)極大值點,極小值點.【解析】(1)求函數(shù)的導數(shù),利用函數(shù)的導數(shù)求出切線的斜率,結合切點坐標,然后求解切線方程;(2)利用導數(shù)研究f(x)的單調(diào)性,判斷函數(shù)的極值點即可【小問1詳解】函數(shù),函數(shù)的導數(shù)為,,在處的切線方程:,即【小問2詳解】令,,解得,當時,可得,即的單調(diào)遞減區(qū)間,或,可得,∴函數(shù)單調(diào)遞增區(qū)間,,的極大值點,極小值點20、(1)的通項公式為,的通項公式為;(2).【解析】(1)用基本量表示題干中的量,聯(lián)立求解即可;(2)由,,用乘公比錯位相減法求和即可.【詳解】(1)設等差數(shù)列的公差為d,等比數(shù)列的公比為q.由已知,得,而,所以,解得,所以.由得.①,由得.②,聯(lián)立①②解得,所以.故的通項公式為,的通項公式為.(2)設數(shù)列的前n項和為,由,得.,,上述兩式相減,得,所以,即.21、(1);(2);(3).【解析】以點為坐標原點,、、所在直線分別為、、軸建立空間直角坐標系,設.(1)寫出、的坐標,利用空間向量法計算出直線與所成角的余弦值;(2)求出平面的一個法向量的坐標,利用空間向量法可計算得出直線與平面所成角的正弦值;(3)求出平面的一個法向量的坐標,利用空間向量法可求得二面角的余弦值.【詳解】平面,四邊形為正方形,設.以點為坐標原點,、、所在直線分別為、、軸建立空間直角坐標系,如下圖所示:則、、、、、.(1),,,所以,異面直線、所成角的余弦值為;(2)設平面的一個法向量為,,,由,可得,取,可得,則,,,因此,直線與平面所成角的正弦值為;(3)設平面的一個法向量為,,,由,可得,得,取,則,,所以,平面的一個法向量為,,由圖形可知,二面角為銳角,因此,二面角的余弦值為.【點睛】方法點睛:求空間角的常用方法:(1)定義法:由異面直線所成角、線面角、二面角的定義,結合圖形,作出所求空間角,再結合題中條件,解對應的三角形,即可求出結果;(2)向量法:建立適當?shù)目臻g直角坐標系,通過計算向量的夾角(兩直線的方向向量、直線的方向向量與平面的法向量、兩平面的法向量)的余弦值,即可求得結果.22、(1);(2).【解析】(1)根據(jù)已知條件,結合垂徑定理,以及點到直線的距離公式,即可求解(2)根據(jù)已知圓的方程,令y=0,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030年廚電產(chǎn)品用戶反饋行業(yè)深度調(diào)研及發(fā)展戰(zhàn)略咨詢報告
- 2025-2030年原產(chǎn)地直供綠茶系列企業(yè)制定與實施新質(zhì)生產(chǎn)力戰(zhàn)略研究報告
- 2025-2030年商業(yè)物業(yè)智能管理系統(tǒng)行業(yè)跨境出海戰(zhàn)略研究報告
- 2025-2030年塑木生態(tài)浮床企業(yè)制定與實施新質(zhì)生產(chǎn)力戰(zhàn)略研究報告
- 生態(tài)旅游教育培養(yǎng)未來環(huán)保領袖
- 現(xiàn)代企業(yè)知識管理的實施與挑戰(zhàn)
- 2024年12月南充市職業(yè)能力發(fā)展服務中心公開考核公開招聘工作人員筆試歷年典型考題(歷年真題考點)解題思路附帶答案詳解
- 陶瓷生產(chǎn)貸款居間服務合同
- 蕪湖市裝修材料采購合同
- 2025年度包裝機械制造廠員工安全責任合同樣本
- 拉擠樹脂及其成型工藝介紹課件
- 軸套類零件件的加工課件
- 北京市水務安全生產(chǎn)風險評估指南
- 吸引器教學講解課件
- 醫(yī)學心理學人衛(wèi)八版66張課件
- 物業(yè)服務五級三類收費重點標準
- 工商注冊登記信息表
- 仿古建筑施工常見質(zhì)量通病及防治措施
- 漢代儒學大師董仲舒思想課件
- 普通沖床設備日常點檢標準作業(yè)指導書
- 科技文獻檢索與利用PPT通用課件
評論
0/150
提交評論