茂名市重點中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析_第1頁
茂名市重點中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析_第2頁
茂名市重點中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析_第3頁
茂名市重點中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析_第4頁
茂名市重點中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

茂名市重點中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.某三棱錐的三視圖如圖所示,則該三棱錐內(nèi)切球的表面積為A.B.C.D.2.加斯帕爾·蒙日(圖1)是18~19世紀(jì)法國著名的幾何學(xué)家,他在研究圓錐曲線時發(fā)現(xiàn):橢圓的任意兩條互相垂直的切線的交點都在同一個圓上,其圓心是橢圓的中心,這個圓被稱為“蒙日圓”(圖2).則橢圓的蒙日圓的半徑為()A.3 B.4C.5 D.63.已知直線,兩個不同的平面,,則下列命題正確的是()A.若,,則 B.若,,則C.若,,則 D.若,,則4.已知數(shù)列{an}的前n項和為Sn,滿足a1=1,-=1,則an=()A.2n-1 B.nC.2n-1 D.2n-15.過拋物線的焦點作互相垂直的弦,則的最小值為()A.16 B.18C.32 D.646.將函數(shù)圖象上所有點的橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變,再將所得圖象向右平移個單位長度,得到函數(shù)的圖象,則()A. B.C. D.7.在正方體中,,則()A. B.C. D.8.已知拋物線的焦點為,為拋物線上一點,為坐標(biāo)原點,且,則()A.4 B.2C. D.9.雙曲線的焦距是()A.4 B.C.8 D.10.“且”是“”的()A.充分不必要條件 B.必要不充分條件C充要條件 D.既不充分也不必要條件11.連續(xù)拋擲一枚硬幣3次,觀察正面出現(xiàn)的情況,事件“至少2次出現(xiàn)正面”的對立事件是()A.只有2次出現(xiàn)反面 B.至多2次出現(xiàn)正面C.有2次或3次出現(xiàn)正面 D.有2次或3次出現(xiàn)反面12.直線的傾斜角為()A.60° B.30°C.120° D.150°二、填空題:本題共4小題,每小題5分,共20分。13.如圖,四棱錐的底面是正方形,底面,為的中點,若,則點到平面的距離為___________.14.已知集合,,將中的所有元素按從大到小的順序排列構(gòu)成一個數(shù)列,則數(shù)列的前n項和的最大值為___________.15.已知拋物線的準(zhǔn)線方程為,在拋物線C上存在A、B兩點關(guān)于直線對稱,設(shè)弦AB的中點為M,O為坐標(biāo)原點,則的值為___________.16.已知數(shù)列中,.若為等差數(shù)列,則______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐P-ABCD中,底面ABCD是邊長為2的菱形,∠DAB=60°,PD⊥底面ABCD,點F為棱PD的中點,二面角的余弦值為.(1)求PD的長;(2)求異面直線BF與PA所成角的余弦值;(3)求直線AF與平面BCF所成角的正弦值.18.(12分)已知三棱柱中,面底面,,底面是邊長為的等邊三角形,,、分別在棱、上,且.(1)求證:底面;(2)在棱上找一點,使得和面所成角的余弦值為,并說明理由.19.(12分)已知,,分別是銳角內(nèi)角,,的對邊,,.(1)求的值;(2)若的面積為,求的值.20.(12分)已知為數(shù)列的前n項和,,且,,其中為常數(shù).(1)求證:數(shù)列為等差數(shù)列;(2)是否存在,使得是等差數(shù)列?并說明理由.21.(12分)已知橢圓的離心率為,右焦點為F,且E上一點P到F的最大距離3(1)求橢圓E的方程;(2)若A,B為橢圓E上的兩點,線段AB過點F,且其垂直平分線交x軸于H點,,求22.(10分)已知圓內(nèi)有一點,過點P作直線l交圓C于A,B兩點.(1)當(dāng)P為弦的中點時,求直線l的方程;(2)若直線l與直線平行,求弦的長.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】由三視圖可知該幾何體是一個三棱錐,根據(jù)等積法求出幾何體內(nèi)切球的半徑,再計算內(nèi)切球的表面積【詳解】解:由三視圖知該幾何體是一個三棱錐,放入棱長為2的正方體中,如圖所示:設(shè)三棱錐內(nèi)切球的半徑為,則由等體積法得,解得,所以該三棱錐內(nèi)切球的表面積為故選:A【點睛】本題考查了由三視圖求三棱錐內(nèi)切球表面積的應(yīng)用問題,屬于中檔題2、A【解析】由蒙日圓的定義,確定出圓上的一點即可求出圓的半徑.【詳解】由蒙日圓的定義,可知橢圓的兩條切線的交點在圓上,所以,故選:A3、C【解析】對于A,可能在內(nèi),故可判斷A;對于B,可能相交,故可判斷B;對于C,根據(jù)線面垂直的判定定理,可判定C;對于D,和可能平行,或斜交或在內(nèi),故可判斷D.【詳解】對于A,除了外,還有可能在內(nèi),故可判斷A錯誤;對于B,,那么可能相交,故可判斷B錯誤;對于C,根據(jù)線面平行的性質(zhì)定理可知,在內(nèi)一定存在和平行的直線,那么該直線也垂直于,所以,故判定C正確;對于D,,,則和可能平行,或斜交或在內(nèi),故可判D.錯誤,故選:C.4、A【解析】由題可得,利用與的關(guān)系即求.【詳解】∵a1=1,-=1,∴是以1為首項,以1為公差的等差數(shù)列,∴,即,∴當(dāng)時,,當(dāng)時,也適合上式,所以故選:A.5、B【解析】根據(jù)拋物線方程求出焦點坐標(biāo),分別設(shè)出,所在直線方程,與拋物線方程聯(lián)立,利用根與系數(shù)的關(guān)系及弦長公式求得,,然后利用基本不等式求最值.【詳解】拋物線的焦點,設(shè)直線的直線方程為,則直線的方程為.,,,.由,得,,同理可得..當(dāng)且僅當(dāng),即時取等號.所以的最小值為.故選:B6、A【解析】根據(jù)三角函數(shù)圖象的變換,由逆向變換即可求解.【詳解】由已知的函數(shù)逆向變換,第一步,向左平移個單位長度,得到的圖象;第二步,圖象上所有點的橫坐標(biāo)縮短到原來的,縱坐標(biāo)不變,得到的圖象,即的圖象.故.故選:A7、A【解析】根據(jù)空間向量基本定理,結(jié)合空間向量加法的幾何意義進行求解即可.【詳解】因為,而,所以有,故選:A8、B【解析】依題意可得,設(shè),根據(jù)可得,,根據(jù)為拋物線上一點,可得.【詳解】依題意可得,設(shè),由得,所以,,所以,,因為為拋物線上一點,所以,解得.故選:B.【點睛】本題考查了平面向量加法的坐標(biāo)運算,考查了求拋物線方程,屬于基礎(chǔ)題.9、C【解析】根據(jù),先求半焦距,再求焦距即可.【詳解】解:由題意可得,,∴,故選:C【點睛】考查求雙曲線的焦距,基礎(chǔ)題.10、A【解析】按照充分必要條件的判斷方法判斷,“且”能否推出“”,以及“”能否推出“且”,判斷得到正確答案,【詳解】當(dāng)且時,成立,反過來,當(dāng)時,例:,不能推出且.所以“且”是“”的充分不必要條件.故選:A【點睛】本題考查充分不必要條件的判斷,重點考查基本判斷方法,屬于基礎(chǔ)題型.11、D【解析】根據(jù)對立事件的定義即可得出結(jié)果.【詳解】對立事件是指事件A和事件B必有一件發(fā)生,連續(xù)拋擲一枚均勻硬幣3次,“至少2次出現(xiàn)正面”即有2次或3次出現(xiàn)正面,對立事件為0次或1次出現(xiàn)正面,即“有2次或3次出現(xiàn)反面”故選:D12、C【解析】求出斜率,根據(jù)斜率與傾斜角的關(guān)系,即可求解.【詳解】解:,即,直線的斜率為,即直線的傾斜角為120°.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】以點為坐標(biāo)原點,、、所在直線分別為、、軸建立空間直角坐標(biāo)系,利用空間向量法可求得點到平面的距離.【詳解】因為底面,,以點為坐標(biāo)原點,、、所在直線分別為、、軸建立空間直角坐標(biāo)系,則、、、,設(shè)平面的法向量為,,,則,取,可得,,所以,點到平面的距離為.故答案為:.14、【解析】由題意設(shè),,根據(jù)可得,從而,即可得出答案.【詳解】設(shè),由,得,由,得中的元素滿足,即,可得所以,由,所以所以,要使得數(shù)列的前n項和的最大值,即求出數(shù)列中所以滿足的項的和即可.即,得,則所以數(shù)列的前n項和的最大值為故答案為:147215、5【解析】先運用點差法得到,然后通過兩點距離公式求出結(jié)果詳解】解:拋物線的準(zhǔn)線方程為,所以,解得,所以拋物線的方程為,設(shè)點,,,,的中點為,,則,,兩式相減得,即,又因為,兩點關(guān)于直線對稱,所以,解得,可得,則,故答案為:516、【解析】利用等差中項求解即可【詳解】由為等差數(shù)列,則,解得故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)(3)【解析】(1)以為軸,為軸,軸與垂直,建立如圖所示的空間直角坐標(biāo)系,寫出各點坐標(biāo),設(shè),,由空間向量法求二面角,從而求得,得長;(2)由空間向量法求異面直線所成的角;(3)由空間向量法求線面角【小問1詳解】以為軸,為軸,軸與垂直,由于菱形中,軸是的中垂線,建立如圖坐標(biāo)系,則,,,設(shè),,,,設(shè)平面一個法向量為,則,令,則,,即,平面的一個法向量是,因為二面角余弦值為.所以,(負值舍去)所以;【小問2詳解】由(1),,,,所以異面直線BF與PA所成角的余弦值為【小問3詳解】由(1)平面的一個法向量為,又,,所以直線AF與平面BCF所成角的正弦值為18、(1)證明見解析;(2)為的中點,理由見解析.【解析】(1)取的中點,連接,利用面面垂直的性質(zhì)定理可得出平面,可得出,再由,結(jié)合線面垂直的判定定理可證得結(jié)論成立;(2)以點為坐標(biāo)原點,、、的方向分別為、、軸的正方向建立空間直角坐標(biāo)系,設(shè)點,利用空間向量法可得出關(guān)于實數(shù)的方程,求出的值,即可得出結(jié)論.【詳解】(1)取的中點,連接,如圖:因為三角形是等邊三角形,所以,又因為面底面,平面平面,面,所以平面,又面,所以,又,,平面;(2)以點為坐標(biāo)原點,、、的方向分別為、、軸的正方向建立如下圖所示的空間直角坐標(biāo)系,則、、,在上找一點,其中,,,,設(shè)面的一個法向量,則,不妨令,則,和面所成角的余弦值為,則,解得或(舍),所以,為的中點,符合題意.19、(1);(2)4.【解析】(1)由正弦定理即可得答案.(2)根據(jù)題意得到,再由關(guān)于角的余弦定理和整理化簡得,再由的面積,即可求出的值.【小問1詳解】由及正弦定理可得.【小問2詳解】由銳角中得,根據(jù)余弦定理可得,代入得,整理得,即,解得,,解得.20、(1)詳見解析;(2)存在時是等差數(shù)列,詳見解析.【解析】(1)利用與的關(guān)系可得,再結(jié)合條件即證;(2)由題可得,,若是等差數(shù)列,可得,進而可求數(shù)列的通項公式,即證.【小問1詳解】∵,∴,∴,又,∴,∴,∴數(shù)列為等差數(shù)列;【小問2詳解】∵,,∴,又,∴,若是等差數(shù)列,則,即,解得,當(dāng)時,由,∴數(shù)列的奇數(shù)項構(gòu)成的數(shù)列為首項為1,公差為2的等差數(shù)列,∴,即,為奇數(shù),∴數(shù)列的偶數(shù)項構(gòu)成的數(shù)列為首項為2,公差為2的等差數(shù)列,∴,即,為偶數(shù),綜上可得,當(dāng)時,,,故存在時,使數(shù)列是等差數(shù)列.21、(1);(2)【解析】(1)根據(jù)離心率和最大距離建立等式即可求解;(2)根據(jù)弦長,求出直線方程,解出點的坐標(biāo)即可得解.【詳解】(1)橢圓的離心率為,右焦點為F,且E上一點P到F的最大距離3,所以,所以,所以橢圓E的方程;(2)A,B為橢圓E上的兩點,線段AB過點F,且其垂直平分線交x軸于H點,所以線段AB所在直線斜率一定存在,所以設(shè)該直線方程代入,整理得:,設(shè),

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論