




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
湖南省衡陽縣第三中學(xué)2025屆數(shù)學(xué)高一上期末達標(biāo)檢測試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.下列命題中,真命題是.A.xR,x2+1=x B.xR,x2+1<2xC.xR,x2+1>x D.xR,x2+2x>12.函數(shù)的零點所在區(qū)間是()A. B.C. D.3.的值為()A. B.C. D.4.下列函數(shù)是偶函數(shù)的是()A. B.C. D.5.函數(shù)(為自然對數(shù)的底)的零點所在的區(qū)間為A. B.C. D.6.設(shè)函數(shù)的圖象為,關(guān)于點A(2,1)的對稱圖象為,若直線y=b與有且僅有一個公共點,則b的值為A.0 B.-4C.0或4 D.0或-47.已知角終邊經(jīng)過點,且,則的值是()A. B.C. D.8.已知函數(shù)與的圖象關(guān)于軸對稱,當(dāng)函數(shù)和在區(qū)間同時遞增或同時遞減時,把區(qū)間叫做函數(shù)的“不動區(qū)間”.若區(qū)間為函數(shù)的“不動區(qū)間”,則實數(shù)的取值范圍是A. B.C. D.9.函數(shù)f(x)圖象大致為()A. B.C. D.10.設(shè)全集,,,則A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.如圖,、、、分別是三棱柱的頂點或所在棱的中點,則表示直線與是異面直線的圖形有______.12.已知集合,若,則________.13.已知函數(shù),,若對任意,總存在,使得成立,則實數(shù)的取值范圍為__________.14.設(shè)函數(shù),若關(guān)于x方程有且僅有6個不同的實根.則實數(shù)a的取值范圍是_______.15.已知某扇形的弧長為,面積為,則該扇形的圓心角(正角)為_________.16.不等式的解集為_________________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知,且的最小正周期為.(1)求關(guān)于x的不等式的解集;(2)求在上的單調(diào)區(qū)間.18.已知直線過點,并與直線和分別交于點,若線段被點平分,求:(1)直線的方程;(2)以坐標(biāo)原點為圓心且被截得的弦長為的圓的方程19.已知函數(shù)(1)求函數(shù)的最小正周期和單調(diào)遞增區(qū)間;(2)若在區(qū)間上存在唯一的最小值為-2,求實數(shù)m的取值范圍20.已知函數(shù)求函數(shù)的最小正周期與對稱中心;求函數(shù)的單調(diào)遞增區(qū)間21.有一批材料,可以建成長為240米的圍墻.如圖,如果用材料在一面靠墻的地方圍成一塊矩形的場地,中間用同樣材料隔成三個相等面積的矩形,怎樣圍法才可取得最大的面積?并求此面積.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】根據(jù)全稱命題和特稱命題的含義,以及不等式性質(zhì)的應(yīng)用,即可求解.【詳解】對于A中,,所以,所以不正確;對于B中,,所以,所以不正確;對于C中,,所以,所以正確;對于D中,,所以不正確,故選C.【點睛】本題主要考查了全稱命題與特稱命題的真假判定,其中解答中正確理解全稱命題和特稱命題的含義,以及不等式性質(zhì)的應(yīng)用是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.2、B【解析】判斷函數(shù)的單調(diào)性,根據(jù)函數(shù)零點存在性定理即可判斷.【詳解】函數(shù)的定義域為,且函數(shù)在上單調(diào)遞減;在上單調(diào)遞減,所以函數(shù)為定義在上的連續(xù)減函數(shù),又當(dāng)時,,當(dāng)時,,兩函數(shù)值異號,所以函數(shù)的零點所在區(qū)間是,故選:B.3、A【解析】根據(jù)誘導(dǎo)公式以及倍角公式求解即可.【詳解】原式.故選:A4、D【解析】利用偶函數(shù)的性質(zhì)對每個選項判斷得出結(jié)果【詳解】A選項:函數(shù)定義域為,且,,故函數(shù)既不是奇函數(shù)也不是偶函數(shù),A選項錯誤B選項:函數(shù)定義域為,且,,故函數(shù)既不是奇函數(shù)也不是偶函數(shù)C選項:函數(shù)定義域為,,故函數(shù)為奇函數(shù)D選項:函數(shù)定義域為,,故函數(shù)是偶函數(shù)故選D【點睛】本題考查函數(shù)奇偶性的定義,在證明函數(shù)奇偶性時需注意函數(shù)的定義域;還需掌握:奇函數(shù)加減奇函數(shù)為奇函數(shù);偶函數(shù)加減偶函數(shù)為偶函數(shù);奇函數(shù)加減偶函數(shù)為非奇非偶函數(shù);奇函數(shù)乘以奇函數(shù)為偶函數(shù);奇函數(shù)乘以偶函數(shù)為奇函數(shù);偶函數(shù)乘以偶函數(shù)為偶函數(shù)5、B【解析】分析:先判斷函數(shù)的單調(diào)性,然后結(jié)合選項,利用零點的存在定理,即可求解.詳解:由題意,函數(shù)為單調(diào)遞減函數(shù),又因為,由函數(shù)的零點判斷可知,函數(shù)的零點在區(qū)間,故選B.點睛:本題主要考查了函數(shù)的零點的判定定理及應(yīng)用,其中熟記函數(shù)的零點的存在定理是解答本題的關(guān)鍵,著重考查了推理與計算能力,屬于基礎(chǔ)題.6、C【解析】先設(shè)圖像上任一點以及P關(guān)于點的對稱點,根據(jù)點關(guān)于點對稱的性質(zhì),用p的坐標(biāo)表示的坐標(biāo),再把的坐標(biāo)代入f(x)的解析式進行整理,求出圖象的解析式,通過對解析式值域的分析,再結(jié)合直線y=b與有且僅有一個公共點,來確定未知量b的值?!驹斀狻吭O(shè)圖像上任一點,且P關(guān)于點的對稱點,則有,解得,又點在函數(shù)的圖像上,則有,那么圖像的函數(shù)為,當(dāng)時,,,當(dāng)且僅當(dāng)時取到等號,此時取到最小值4,直線y=b與只有一個公共點,故b=4,同理當(dāng)時,,,即,此時取到最大值0,當(dāng)且僅當(dāng)x=3時取到等號,直線y=b與只有一個公共點,故b=0.綜上,b的值為0或4.故選:C【點睛】利用基本不等式求出函數(shù)最值時,要注意函數(shù)定義域是否包含取等點,本題是一道函數(shù)綜合題7、A【解析】由終邊上的點及正切值求參數(shù)m,再根據(jù)正弦函數(shù)的定義求.【詳解】由題設(shè),,可得,所以.故選:A8、C【解析】若區(qū)間[1,2]為函數(shù)f(x)=|2x﹣t|的“不動區(qū)間”,則函數(shù)f(x)=|2x﹣t|和函數(shù)F(x)=|﹣t|在[1,2]上單調(diào)性相同,則(2x﹣t)(2﹣x﹣t)≤0在[1,2]上恒成立,進而得到答案【詳解】∵函數(shù)y=f(x)與y=F(x)的圖象關(guān)于y軸對稱,∴F(x)=f(﹣x)=|2﹣x﹣t|,∵區(qū)間[1,2]為函數(shù)f(x)=|2x﹣t|的“不動區(qū)間”,∴函數(shù)f(x)=|2x﹣t|和函數(shù)F(x)=|2﹣x﹣t|在[1,2]上單調(diào)性相同,∵y=2x﹣t和函數(shù)y=2﹣x﹣t的單調(diào)性相反,∴(2x﹣t)(2﹣x﹣t)≤0在[1,2]上恒成立,即1﹣t(2x+2﹣x)+t2≤0在[1,2]上恒成立,即2﹣x≤t≤2x在[1,2]上恒成立,即≤t≤2,故答案為:C【點睛】(1)本題主要考查不動點定義及利用定義解答數(shù)學(xué)問題的能力,考查指數(shù)函數(shù)的圖像和性質(zhì),考查不等式的恒成立問題,意在考查學(xué)生對這些知識的掌握水平和分析推理能力.(2)正確理解不動區(qū)間的定義,得到(2x﹣t)(2﹣x﹣t)≤0在[1,2]上恒成立,是解答的關(guān)鍵9、A【解析】根據(jù)函數(shù)圖象的特征,利用奇偶性判斷,再利用特殊值取舍.【詳解】因為f(x)=f(x),所以f(x)是奇函數(shù),排除B,C又因為,排除D故選:A【點睛】本題主要考查了函數(shù)的圖象,還考查了理解辨析的能力,屬于基礎(chǔ)題.10、B【解析】全集,,,.故選B.二、填空題:本大題共6小題,每小題5分,共30分。11、②④【解析】圖①中,直線,圖②中面,圖③中,圖④中,面【詳解】解:根據(jù)題意,在①中,且,則四邊形是平行四邊形,有,不是異面直線;圖②中,、、三點共面,但面,因此直線與異面;在③中,、分別是所在棱的中點,所以且,故,必相交,不是異面直線;圖④中,、、共面,但面,與異面所以圖②④中與異面故答案為:②④.12、0【解析】若兩個集合相等,則兩個集合中的元素完全相同.,又,故答案為0.點睛:利用元素的性質(zhì)求參數(shù)的方法(1)確定性的運用:利用集合中元素的確定性解出參數(shù)的所有可能值;(2)互異性的運用:根據(jù)集合中元素的互異性對集合中元素進行檢驗.13、【解析】由題分析若對任意,總存在,使得成立,則的最大值小于等于的最大值,進而求解即可【詳解】由題,因為,對于函數(shù),則當(dāng)時,是單調(diào)遞增的一次函數(shù),則;當(dāng)時,在上單調(diào)遞增,在上單調(diào)遞減,則,所以的最大值為4;對于函數(shù),,因為,所以,所以;所以,即,故,故答案為:【點睛】本題考查函數(shù)恒成立問題,考查分段函數(shù)的最值,考查正弦型函數(shù)的最值,考查轉(zhuǎn)化思想14、或或【解析】作出函數(shù)的圖象,設(shè),分關(guān)于有兩個不同的實數(shù)根、,和兩相等實數(shù)根進行討論,當(dāng)方程有兩個相等的實數(shù)根時,再檢驗,當(dāng)方程有兩個不同的實數(shù)根、時,或,再由二次方程實數(shù)根的分布進行討論求解即可.【詳解】作出函數(shù)的簡圖如圖,令,要使關(guān)于的方程有且僅有個不同的實根,(1)當(dāng)方程有兩個相等的實數(shù)根時,由,即,此時當(dāng),此時,此時由圖可知方程有4個實數(shù)根,此時不滿足.當(dāng),此時,此時由圖可知方程有6個實數(shù)根,此時滿足條件(2)當(dāng)方程有兩個不同的實數(shù)根、時,則或當(dāng)時,由可得則的根為由圖可知當(dāng)時,方程有2個實數(shù)根當(dāng)時,方程有4個實數(shù)根,此時滿足條件.當(dāng)時,設(shè)由,則,即綜上所述:滿足條件的實數(shù)a的取值范圍是或或故答案為:或或【點睛】關(guān)鍵點睛:本題考查利用復(fù)合型二次函數(shù)的零點個數(shù)求參數(shù),考查數(shù)形結(jié)合思想的應(yīng)用,解答本題的關(guān)鍵由條件結(jié)合函數(shù)的圖象,分析方程的根情況及其范圍,再由二次方程實數(shù)根的分布解決問題,屬于難題.15、【解析】根據(jù)給定條件求出扇形所在圓的半徑即可計算作答.【詳解】設(shè)扇形所在圓的半徑為,扇形弧長為,即,由扇形面積得:,解得,所以該扇形的圓心角(正角)為.故答案為:16、或.【解析】利用一元二次不等式的求解方法進行求解.【詳解】因為,所以,所以或,所以不等式的解集為或.故答案為:或.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)單調(diào)遞增區(qū)間為和,單調(diào)遞減區(qū)間為【解析】(1)首先利用兩角差的正弦公式及二倍角公式將函數(shù)化簡,再根據(jù)函數(shù)的最小正周期求出,即可得到函數(shù)解析式,再根據(jù)正弦函數(shù)的性質(zhì)計算可得;(2)由的取值范圍,求出的范圍,再跟正弦函數(shù)的性質(zhì)計算可得.【小問1詳解】解:因為所以即,由及的最小正周期為,所以,解得;由得,,解得,所求不等式的解集為小問2詳解】解:,,在和上遞增,在上遞減,令,解得;令,解得;令,解得;所以在上的單調(diào)遞增區(qū)間為和,單調(diào)遞減區(qū)間為;18、(1);(2).【解析】(1)依題意可設(shè),,分別代入到直線和中,求出點坐標(biāo),即可求出直線的方程;(2)由題意可知,求出,即可求出圓的方程【詳解】(1)依題意可設(shè),因為線段被點平分,所以,則,解得,,即,又過點,易得方程為(2)設(shè)圓半徑為,則,其中為弦心距,,可得,故所求圓的方程為.19、(1),(2)【解析】(1)用誘導(dǎo)公式將函數(shù)化為,然后可解;(2)根據(jù)m介于第一個最小值點和第二個最小值點之間可解.【小問1詳解】所以的最小正周期,由,解得,所以的單調(diào)遞增區(qū)間為.【小問2詳解】令,得因為在區(qū)間上存在唯一的最小值為-2,所以,,即所以實數(shù)m的取值范圍是.20、(1)最小正周期,對稱中心為;(2)【解析】直接利用三角函數(shù)關(guān)系式的恒等變變換,把函數(shù)的關(guān)系式變形成正弦型函數(shù),進一步求出函數(shù)的最小正周期和對稱中心;直接利用整體思想求出函數(shù)的單調(diào)遞增區(qū)間【詳解】函數(shù),,,所以函數(shù)的最小正周期為,令:,解得:,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年非甾體抗炎藥物合作協(xié)議書
- 銷售代理合作協(xié)議獨家渠道政策
- 網(wǎng)絡(luò)服務(wù)訂購協(xié)議及用戶使用規(guī)范
- 個人公司借款合同
- 農(nóng)村家庭養(yǎng)殖場合作建設(shè)與管理協(xié)議
- 高校在線課程資源共享平臺合作協(xié)議
- 無人機飛行服務(wù)風(fēng)險免責(zé)協(xié)議
- 管理心理學(xué)在高管培訓(xùn)中的效用試題及答案
- 個人包車包司機協(xié)議書
- 《凸輪設(shè)計和分析》課件
- 《零售促銷策略》課件
- 美甲店工作分工合同協(xié)議
- 第15課 明朝的統(tǒng)治 課件 統(tǒng)編版七年級歷史下冊
- 水文學(xué)試題題庫及答案
- 2025天津東疆綜合保稅區(qū)管理委員會招聘10人筆試參考題庫附帶答案詳解
- 法院書記員招聘2023年筆試考試必做題有答案
- 2024年北京大興國際機場臨空經(jīng)濟區(qū)幼兒園招聘教師考試真題
- (三模)烏魯木齊地區(qū)2025年高三年級第三次質(zhì)量監(jiān)測理科綜合試卷(含答案)
- 《刑法學(xué)課件 》課件各章節(jié)內(nèi)容-第十章 共同犯罪
- 2025神農(nóng)科技集團有限公司第一批校園招聘17人(山西)筆試參考題庫附帶答案詳解
評論
0/150
提交評論