福建省寧德市2025屆高二數(shù)學第一學期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第1頁
福建省寧德市2025屆高二數(shù)學第一學期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第2頁
福建省寧德市2025屆高二數(shù)學第一學期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第3頁
福建省寧德市2025屆高二數(shù)學第一學期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第4頁
福建省寧德市2025屆高二數(shù)學第一學期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

福建省寧德市2025屆高二數(shù)學第一學期期末質(zhì)量跟蹤監(jiān)視模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知A,B,C,D是同一球面上的四個點,其中是正三角形,平面,,則該球的表面積為()A. B.C. D.2.若定義在R上的函數(shù)滿足,則不等式的解集為()A. B.C. D.3.在等差數(shù)列中,,,則的取值范圍是()A. B.C. D.4.設(shè),則的一個必要不充分條件為()A. B.C. D.5.如圖是等軸雙曲線形拱橋,現(xiàn)拱頂距離水面6米,水面寬米,若水面下降6米,則水面寬()A.米 B.米C.米 D.米6.世界上最早在理論上計算出“十二平均律”的是我國明代杰出的律學家朱載堉,他當時稱這種律制為“新法密率”十二平均律將一個純八度音程分成十二份,依次得到十三個單音,從第二個單音起,每一個單音的頻率與它前一個單音的頻率的比都相等,且最后一個單音是第一個單音頻率的2倍.已知第十個單音的頻率,則與第四個單音的頻率最接近的是()A.880 B.622C.311 D.2207.過雙曲線的右焦點F作一條漸近線的垂線,垂足為M,且FM的中點A在雙曲線上,則雙曲線離心率e等于()A. B.C. D.8.已知向量,若,則()A. B.5C.4 D.9.經(jīng)過點的直線的傾斜角為,則A. B.C. D.10.設(shè)等差數(shù)列,的前n項和分別是,若,則()A. B.C. D.11.已知數(shù)列滿足,且,為其前n項的和,則()A. B.C. D.12.已知等差數(shù)列{an}的前n項和為Sn,且S7=28,則a4=()A.4 B.7C.8 D.14二、填空題:本題共4小題,每小題5分,共20分。13.過點作斜率為的直線與橢圓相交于、兩個不同點,若是的中點,則該橢圓的離心率___________.14.如圖,已知與所在平面垂直,且,,,點P、Q分別在線段BD、CD上,沿直線PQ將向上翻折,使D與A重合.則直線AP與平面ACQ所成角的正弦值為______15.若橢圓和圓(c為橢圓的半焦距)有四個不同的交點,則橢圓的離心率的取值范圍是_____.16.已知函數(shù),若在上是增函數(shù),則實數(shù)的取值范圍是________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知圓過點,,且圓心在直線:上.(1)求圓的方程;(2)若從點發(fā)出的光線經(jīng)過軸反射,反射光線剛好經(jīng)過圓心,求反射光線的方程.18.(12分)已知的展開式中,第4項的系數(shù)與倒數(shù)第4項的系數(shù)之比為.(1)求m的值;(2)求展開式中所有項的系數(shù)和與二項式系數(shù)和.19.(12分)已知點到兩個定點的距離比為(1)求點的軌跡方程;(2)若過點的直線被點的軌跡截得的弦長為,求直線的方程20.(12分)已知動圓過點且動圓內(nèi)切于定圓:記動圓圓心的軌跡為曲線.(1)求曲線方程;(2)若、是曲線上兩點,點滿足求直線的方程.21.(12分)已知命題:,在下面①②中任選一個作為:,使為真命題,求出實數(shù)a取值范圍.①關(guān)于x的方程有兩個不等正根;②.(若選①、選②都給出解答,只按第一個解答計分.)22.(10分)甲乙兩人輪流投籃,每人每次投一球,約定甲先投且先投中者獲勝,一直到有人獲勝或每人都已投球3次時投籃結(jié)束,設(shè)甲每次投籃投中的概率為,乙每次投籃投中的概率為,且各次投籃互不影響(1)求甲乙各投球一次,比賽結(jié)束的概率;(2)求甲獲勝的概率

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】由題意畫出幾何體的圖形,把、、、擴展為三棱柱,上下底面中心連線的中點與的距離為球的半徑,由此能求出球的表面積【詳解】把、、、擴展為三棱柱,上下底面中心連線的中點與的距離為球的半徑,,,是正三角形,,,球的表面積為故選:C2、B【解析】構(gòu)造函數(shù),根據(jù)題意,求得其單調(diào)性,利用函數(shù)單調(diào)性解不等式即可.【詳解】構(gòu)造函數(shù),則,故在上單調(diào)遞減;又,故可得,則,即,解得,故不等式解集為.故選:B.【點睛】本題考察利用導(dǎo)數(shù)研究函數(shù)單調(diào)性,以及利用函數(shù)單調(diào)性求解不等式,解決本題的關(guān)鍵是根據(jù)題意構(gòu)造函數(shù),屬中檔題.3、A【解析】根據(jù)題設(shè)可得關(guān)于的不等式,從而可求的取值范圍.【詳解】設(shè)公差為,因為,,所以,即,從而.故選:A.4、C【解析】利用必要條件和充分條件的定義判斷.【詳解】A選項:,,,所以是的充分不必要條件,A錯誤;B選項:,,所以是的非充分非必要條件,B錯誤;C選項:,,,所以是必要不充分條件,C正確;D選項:,,,所以是的非充分非必要條件,D錯誤.故選:C.5、B【解析】以雙曲線的對稱中心為原點,焦點所在對稱軸為y軸建立直角坐標系,求出雙曲線方程,數(shù)形結(jié)合即可求解.【詳解】如圖所示,以雙曲線的對稱中心為原點,焦點所在對稱軸為y軸建立直角坐標系,設(shè)雙曲線標準方程為:(a>0),則頂點,,將A點代入雙曲線方程得,,當水面下降6米后,,代入雙曲線方程得,,∴水面寬:米.故選:B.6、C【解析】依題意,每一個單音的頻率構(gòu)成一個等比數(shù)列,由,算出公比,結(jié)合,即可求出.【詳解】設(shè)第一個單音的頻率為,則最后一個單音的頻率為,由題意知,且每一個單音的頻率構(gòu)成一個等比數(shù)列,設(shè)公比為,則,解得:又,則與第四個單音的頻率最接近的是311,故選:C【點睛】關(guān)鍵點點睛:本題考查等比數(shù)列通項公式的運算,解題的關(guān)鍵是分析題意將其轉(zhuǎn)化為等比數(shù)列的知識,考查學生的計算能力,屬于基礎(chǔ)題.7、A【解析】根據(jù)題意可表示出漸近線方程,進而可知的斜率,表示出直線方程,求出的坐標進而求得A點坐標,代入雙曲線方程整理求得和的關(guān)系式,進而求得離心率【詳解】:由題意設(shè)相應(yīng)的漸近線:,則根據(jù)直線的斜率為,則的方程為,聯(lián)立雙曲線漸近線方程求出,則,,則的中點,把中點坐標代入雙曲線方程中,即,整理得,即,求得,即離心率為,故答案為:8、B【解析】根據(jù)向量垂直列方程,化簡求得.【詳解】由于,所以.故選:B9、A【解析】由題意,得,解得;故選A考點:直線的傾斜角與斜率10、C【解析】結(jié)合等差數(shù)列前項和公式求得正確答案.【詳解】依題意等差數(shù)列,的前n項和分別是,由于,故可設(shè),,當時,,,所以,所以.故選:C11、B【解析】根據(jù)等比數(shù)列的前n項和公式即可求解.【詳解】由題可知是首項為2,公比為3的等比數(shù)列,則.故選:B.12、A【解析】由等差數(shù)列的性質(zhì)可知,再代入等差數(shù)列的前項和公式求解.【詳解】數(shù)列{an}是等差數(shù)列,,那么,所以.故選:A.【點睛】本題考查等差數(shù)列的性質(zhì)和前項和,屬于基礎(chǔ)題型.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】利用點差法可求得的值,利用離心率公式的值.【詳解】設(shè)點、,則,由已知可得,由題意可得,將兩個等式相減得,所以,,因此,.故答案為:.14、##【解析】取的中點,的中點,以所在直線為軸,以所在直線為軸,以所在直線為軸,建立空間直角坐標系,設(shè),根據(jù)求出,再由空間向量的數(shù)量積即可求解.【詳解】取的中點,的中點,如圖以所在直線為軸,以所在直線為軸,以所在直線為軸,建立空間直角坐標系,不妨設(shè),則,,,由,即,解得,所以,故,設(shè)為平面ACQ的一個法向量,因為,,由,即,所以,設(shè)直線AP與平面ACQ所成角為,則.故答案為:15、【解析】當圓的直徑介于橢圓長軸和短軸長度范圍之間時,橢圓和圓有四個不同的焦點,由此列不等式,解不等式求得橢圓離心率的取值范圍.【詳解】由于橢圓和圓有四個焦點,故圓的直徑介于橢圓長軸和短軸長度范圍之間,即.由得,兩邊平方并化簡得,即①.由得,兩邊平方并化簡得,解得②.由①②得.故填.【點睛】本小題主要考查橢圓和圓的位置關(guān)系,考查橢圓離心率取值范圍的求法,屬于中檔題.16、【解析】根據(jù)函數(shù)在上是增函數(shù),分段函數(shù)在整個定義域內(nèi)單調(diào),則在每個函數(shù)內(nèi)單調(diào),注意銜接點的函數(shù)值.【詳解】解:因為函數(shù)在上是增函數(shù),所以在區(qū)間上是增函數(shù)且在區(qū)間上也是增函數(shù),對于函數(shù)在上是增函數(shù),則;①對于函數(shù),(1)當時,,外函數(shù)為定義域內(nèi)的減函數(shù),內(nèi)函數(shù)在上是增函數(shù),根據(jù)復(fù)合函數(shù)“同增異減”可得時函數(shù)在區(qū)間上是減函數(shù),不符合題意,故舍去,(2)當時,外函數(shù)為定義域內(nèi)的增函數(shù),要使函數(shù)在區(qū)間上是增函數(shù),則內(nèi)函數(shù)在上也是增函數(shù),且對數(shù)函數(shù)真數(shù)大于0,即在上也要恒成立,所以,又,所以,②又在上是增函數(shù)則在銜接點處函數(shù)值應(yīng)滿足:,化簡得,③由①②③得,,所以實數(shù)的取值范圍是.故答案為:.【點睛】方法點睛:利用單調(diào)性求參數(shù)方法如下:(1)依據(jù)函數(shù)的圖象或單調(diào)性定義,確定函數(shù)的單調(diào)區(qū)間,與已知單調(diào)區(qū)間比較;(2)需注意若函數(shù)在區(qū)間上是單調(diào)的,則該函數(shù)在此區(qū)間的任意子集上也是單調(diào)的;(3)分段函數(shù)的單調(diào)性,除注意各段的單調(diào)性外,還要注意銜接點的取值三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】(1)根據(jù)題意設(shè)圓心,利用兩點坐標公式求距離公式表示出,解出,確定圓心坐標和半徑,進而得出圓的標準方程;(2)根據(jù)點關(guān)于坐標軸對稱的點的特征可得,利用直線的兩點式方程即可得出結(jié)果.【小問1詳解】圓過點,,因為圓心在直線::上,設(shè)圓心,又圓過點,,所以,即,解得,所以,所以故圓的方程為:;【小問2詳解】點關(guān)于軸的對稱點,則反射光線必經(jīng)過點和點,由直線的兩點式方程可得,即:.18、(1)(2)所有項的系數(shù)和為,二項式系數(shù)和為【解析】(1)寫出展開式的通項,求出其第4項系數(shù)和倒數(shù)第4項系數(shù),列出方程即可求出m的值;(2)令x=1即可求所有展開項系數(shù)之和,二項式系數(shù)之和為2m.【小問1詳解】展開式的通項為:,∴展開式中第4項的系數(shù)為,倒數(shù)第4項的系數(shù)為,∴,即.【小問2詳解】令可得展開式中所有項的系數(shù)和為,展開式中所有項的二項式系數(shù)和為.19、(1)(2)或【解析】(1)設(shè)出,表達出,直接法求出軌跡方程;(2)在第一問的基礎(chǔ)上,先考慮直線斜率不存在時是否符合要求,再考慮斜率存在時,設(shè)出直線方程,表達出圓心到直線的距離,利用垂徑定理列出方程,求出直線方程.【小問1詳解】設(shè),則,,故,兩邊平方得:【小問2詳解】當直線斜率不存在時,直線為,此時弦長為,滿足題意;當直線斜率存在時,設(shè)直線,則圓心到直線距離為,由垂徑定理得:,解得:,此時直線的方程為,綜上:直線的方程為或.20、(1);(2).【解析】(1)根據(jù)兩圓內(nèi)切,以及圓過定點列式求軌跡方程;(2)利用重心坐標公式可知,,再設(shè)直線的方程為與橢圓方程聯(lián)立,利用根與系數(shù)的關(guān)系求解直線方程.【詳解】(1)由已知可得,兩式相加可得則點的軌跡是以、為焦點,長軸長為的橢圓,則因此曲線的方程是(2)因為,則點是的重心,易得直線的斜率存在,設(shè)直線的方程為,聯(lián)立消得:且①②由①②解得則直線的方程為即【點睛】本題考查直線與橢圓的問題關(guān)系,本題的關(guān)鍵是根據(jù)求得,.21、答案見解析【解析】根據(jù)題意,分析、為真時的取值范圍,又由復(fù)合命題真假的判斷方法可得、都是真命題,據(jù)此分析可得答案.【詳解】解:選①時由知在上恒成立,∴,即又由q:關(guān)于x的方程有兩個不等正根,知解得,由為真命題知,解得.實數(shù)a的取值范圍.選②時由知在上恒成立,∴,即又由,知在上恒成立,∴,又,當且僅當時取“=”號,∴,由為真命題知,解得.實數(shù)a的取值范圍.22、(1)(2)【解析】(1)設(shè)事件“甲在第

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論