版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2025屆衡陽市重點中學數(shù)學高二上期末學業(yè)水平測試模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在三棱柱中,,,,則這個三棱柱的高()A1 B.C. D.2.在空間直角坐標系中,點關于軸的對稱點為點,則點到直線的距離為()A B.C. D.63.有3個興趣小組,甲、乙兩位同學各自參加其中一個小組,每位同學參加各個小組的可能性相同,則這兩位同學參加同一個興趣小組的概率為A. B.C. D.4.對于兩個平面、,“內(nèi)有三個點到的距離相等”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件5.在中,,,且BC邊上的高為,則滿足條件的的個數(shù)為()A.3 B.2C.1 D.06.直線與圓相交與A,B兩點,則AB的長等于()A3 B.4C.6 D.17.設,,,則a,b,c的大小關系為()A. B.C. D.8.等差數(shù)列中,若,,則等于()A. B.C. D.9.已知拋物線的焦點為,在拋物線上有一點,滿足,則的中點到軸的距離為()A. B.C. D.10.已知函數(shù)在處取得極值,則的極大值為()A. B.C. D.11.已知角的終邊經(jīng)過點,則,的值分別為A., B.,C., D.,12.等比數(shù)列的各項均為正數(shù),且,則=()A.8 B.16C.32 D.64二、填空題:本題共4小題,每小題5分,共20分。13.在平面上給定相異兩點A,B,點P滿足,則當且時,P點的軌跡是一個圓,我們稱這個圓為阿波羅尼斯圓.已知橢圓的離心率,A,B為橢圓的長軸端點,C,D為橢圓的短軸端點,動點P滿足,若的面積的最大值為3,則面積的最小值為___________.14.如圖,AD與BC是三棱錐中互相垂直的棱,,(c為常數(shù)).若,則實數(shù)的取值范圍為__________.15.若關于的不等式恒成立,則實數(shù)的取值范圍是______.16.圍棋是一種策略性兩人棋類游戲.已知某圍棋盒子中有若干粒黑子和白子,從盒子中取出2粒棋子,2粒都是黑子的概率為,2粒恰好是同一色的概率比不同色的概率大,則2粒恰好都是白子的概率是______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設全集U=R,集合A={x|1≤x≤5},集合B={x|2-a≤x≤1+2a},其中a∈R.(1)若“x∈A”是“x∈B”的充分條件,求a的取值范圍;(2)若“x∈A”是“x∈B”的必要條件,求a的取值范圍.18.(12分)中國男子籃球職業(yè)聯(lián)賽(ChineseBasketballAssociation),簡稱中職籃(CBA),由中國國家體育總局籃球運動管理中心舉辦的男子職業(yè)籃球賽事,旨在全面提高中國籃球運動水平,其中誕生了姚明、王治郅、易建聯(lián)、朱芳雨等球星.該比賽分為常規(guī)賽和季后賽.由于新冠疫情關系,某年聯(lián)賽采用賽會制:所有球隊集中在同一個地方比賽,分兩個階段進行,每個階段采用循環(huán)賽,分主場比賽和客場比賽,積分排名前8球隊進入季后賽.下表是A隊在常規(guī)賽60場比賽中的比賽結果記錄表.階段比賽場數(shù)主場場數(shù)獲勝場數(shù)主場獲勝場數(shù)第一階段30152010第二階段30152515(1)根據(jù)表中數(shù)據(jù),完成下面列聯(lián)表:A隊勝A隊負合計主場5客場20合計60(2)根據(jù)(1)中列聯(lián)表,判斷是否有90%的把握認為比賽的“主客場”與“勝負”之間有關?附:.0.1000.0500.025k2.7063.8415.02419.(12分)在平面直角坐標系內(nèi),已知的三個頂點坐標分別為(1)求邊垂直平分線所在的直線的方程;(2)若的面積為5,求點的坐標20.(12分)已知數(shù)列是公比為2的等比數(shù)列,是與的等差中項(1)求數(shù)列的通項公式;(2)若,求數(shù)列的前n項和21.(12分)已知等差數(shù)列的前三項依次為,4,,前項和為,且.(1)求的通項公式及的值;(2)設數(shù)列的通項,求證是等比數(shù)列,并求的前項和.22.(10分)已知點是圓:上任意一點,是圓內(nèi)一點,線段的垂直平分線與半徑相交于點(1)當點在圓上運動時,求點的軌跡的方程;(2)設不經(jīng)過坐標原點,且斜率為的直線與曲線相交于,兩點,記,的斜率分別是,.當,都存在且不為時,試探究是否為定值?若是,求出此定值;若不是,請說明理由
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】先求出平面ABC的法向量,然后將高看作為向量在平面ABC的法向量上的投影的絕對值,則答案可求.【詳解】設平面ABC的法向量為,而,,則,即有,不妨令,則,故,設三棱柱的高為h,則,故選:D.2、C【解析】按照空間中點到直線的距離公式直接求解.【詳解】由題意,,,的方向向量,,則點到直線的距離為.故選:C.3、A【解析】每個同學參加的情形都有3種,故兩個同學參加一組的情形有9種,而參加同一組的情形只有3種,所求的概率為p=選A4、B【解析】根據(jù)平面的性質(zhì)分別判斷充分性和必要性.【詳解】充分性:若內(nèi)有三個點到的距離相等,當這三個點不在一條直線上時,可得;當這三個點在一條直線上時,則、平行或相交,故充分性不成立;必要性:若,則內(nèi)每個點到的距離相等,故必要性成立,所以“內(nèi)有三個點到的距離相等”是“”的必要不充分條件.故選:B.5、B【解析】利用等面積法求得,再利用正弦定理求得,利用內(nèi)角和的關系及兩角和差化積公式,二倍角公式轉(zhuǎn)化為,再利用正弦函數(shù)的性質(zhì)求滿足條的的個數(shù),即可求解.【詳解】由三角形的面積公式知,即由正弦定理知所以,即,即,即利用兩角和的正弦公式結合二倍角公式化簡得又,則,,且由正弦函數(shù)的性質(zhì)可知,滿足的有2個,即滿足條件的的個數(shù)為2.故選:B6、C【解析】根據(jù)弦長公式即可求出【詳解】因為圓心到直線的距離為,所以AB的長等于故選:C7、A【解析】構造函數(shù),求導判斷其單調(diào)性即可【詳解】令,,令得,,當時,,單調(diào)遞增,,,,,,,故選:A8、C【解析】由等差數(shù)列下標和性質(zhì)可得.【詳解】因為,,所以.故選:C9、A【解析】設點,利用拋物線的定義求出的值,可求得點的橫坐標,即可得解.【詳解】設點,易知拋物線的焦點為,由拋物線的定義可得,得,所以,點的橫坐標為,故點到軸的距離為.故選:A.10、B【解析】首先求出函數(shù)的導函數(shù),依題意可得,即可求出參數(shù)的值,從而得到函數(shù)解析式,再根據(jù)導函數(shù)得到函數(shù)單調(diào)性,即可求出函數(shù)的極值點,從而求出函數(shù)的極大值;【詳解】解:因為,所以,依題意可得,即,解得,所以定義域為,且,令,解得或,令解得,即在和上單調(diào)遞增,在上單調(diào)遞減,即在處取得極大值,在處取得極小值,所以;故選:B11、C【解析】利用任意角的三角函數(shù)的定義:,,,代入計算即可得到答案【詳解】由于角的終邊經(jīng)過點,則,,(為坐標原點),所以由任意角的三角函數(shù)的定義:,.故答案選C【點睛】本題考查任意角的三角函數(shù)的定義,解決此類問題的關鍵是掌握牢記三角函數(shù)定義并能夠熟練應用,屬于基礎題12、B【解析】由等比數(shù)列的下標和性質(zhì)即可求得答案.【詳解】由題意,,所以.故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】先根據(jù)求出圓的方程,再由的面積的最大值結合離心率求出和的值,進而求出面積的最小值.【詳解】解:由題意,設,,因為即兩邊平方整理得:所以圓心為,半徑因為的面積的最大值為3所以,解得:因為橢圓離心率即,所以由得:所以面積的最小值為:故答案為:.【點睛】思路點睛:本題先根據(jù)已知的比例關系求出阿波羅尼斯圓的方程,再利用已知面積和離心率求出橢圓的方程,進而求得面積的最值.14、【解析】分析得都在以為焦點的橢球上,再利用橢球的性質(zhì)得到,化簡即得解.【詳解】解:因為,所以都在以為焦點橢球上,由橢球的性質(zhì)得,是垂直橢球焦點所在直線的弦,的最大值為,此時共面且過中點,即故實數(shù)的取值范圍為.故答案為:15、【解析】設由題可知,當時,可得適合題意,當時,可求函數(shù)的最小值即得,當時不合題意,即得.【詳解】設,由題可知,∴,當時,,適合題意,所以,當時,令,則,此時時,,單調(diào)遞減,,,單調(diào)遞增,∴,又,∴,∴,即,解得,當時,時,,,故的值有正有負,不合題意;綜上,實數(shù)的取值范圍是.故答案為:.【點睛】關鍵點點睛:本題考查不等式恒成立求參數(shù)的取值范圍,設由題可知,當時,利用導數(shù)可求函數(shù)的最小值,結合,可得,進而通過解,即得.16、【解析】根據(jù)互斥事件與對立事件概率公式求解即可【詳解】設“2粒都是黑子”為事件,“2粒都是白子”為事件,“2粒恰好是同一色”為事件,“2粒不同色”為事件,則事件與事件是對立事件,所以因為2粒恰好是同一色的概率比不同色的概率大,所以,所以,又,且事件與互斥,所以,所以故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)由“”是“”的充分條件,可得,從而可得關于的不等式組,解不等式組可得答案;(2)“”是“”的必要條件,可得,然后分和兩種情況求解即可【小問1詳解】由題意得到A=[1,5],由“x∈A”是“x∈B”的充分條件可得A?B,則,解得,故實數(shù)a的取值范圍是.【小問2詳解】由“x∈A”是“x∈B”的必要條件可得B?A,當時,2-a>1+2a,即a<時,滿足題意,當時,即a≥時,則,解得≤a≤1.綜上a≤1,故實數(shù)a的取值范圍是.18、(1)填表見解析(2)沒有【解析】(1)由A隊在常規(guī)賽60場比賽中的比賽結果記錄表可得答案;(2)根據(jù)(1)中的列聯(lián)表,代入可得答案.【小問1詳解】(1)根據(jù)表格信息得到列聯(lián)表:A隊勝A隊負合計主場25530客場201030合計451560【小問2詳解】所以沒有90%的把握認為比賽的“主客場”與“勝負”之間有關.19、(1);(2)或【解析】(1)由題意直線的斜率公式,兩直線垂直的性質(zhì),求出的斜率,再用點斜式求直線的方程(2)根據(jù)的面積為5,求得點到直線的距離,再利用點到直線的距離公式,求得的值【詳解】解:(1),,的中點的坐標為,又設邊的垂直平分線所在的直線的斜率為則,可得的方程為,即邊的垂直平分線所在的直線的方程(2)邊所在的直線方程為設邊上的高為即點到直線的距離為且解得解得或,點的坐標為或20、(1);(2).【解析】(1)根據(jù)給定條件列式求出數(shù)列的首項即可作答.(2)由(1)的結論求出,再借助裂項相消法計算作答.【小問1詳解】因為數(shù)列是公比為2的等比數(shù)列,且是與的等差中項,則有,即,解得,所以.【小問2詳解】由(1)知,,則,即有,所以.21、(1),(2)證明見解析,【解析】(1)直接利用等差中項的應用求出的值,進一步求出數(shù)列的通項公式和的值;(2)利用等比數(shù)列的定義即可證明數(shù)列為等比數(shù)列,進一步求出數(shù)列的和.【小問1詳解】等差數(shù)列的前三項依次為,4,,∴,解得;故首項為2,公差為2,故,前項和為,且,整理得,解得或-11(負值舍去).∴,k=10.【小問2詳解】由(1)得:,故(常數(shù)),故數(shù)列是等比數(shù)列;∴.22、(1);(2)是定值,.【解析】(1)根據(jù)給定條件探求得,再借助橢圓定義直接求得軌跡的方程.(2)設出直線的方程,再與軌跡的方程聯(lián)立,借助韋達定理計算作答.【小問
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 貴州財經(jīng)職業(yè)學院《先進制造訓練》2023-2024學年第一學期期末試卷
- 貴陽職業(yè)技術學院《戶外基礎技能》2023-2024學年第一學期期末試卷
- 2025浙江省安全員A證考試題庫
- 白玉桃種植示范基地建設項目可行性研究報告-白玉桃市場需求持續(xù)擴大
- 廣州中醫(yī)藥大學《商業(yè)銀行管理》2023-2024學年第一學期期末試卷
- 2025江蘇省安全員B證考試題庫
- 2025黑龍江省建筑安全員知識題庫附答案
- 2025河南省建筑安全員考試題庫附答案
- 2025河北建筑安全員《A證》考試題庫
- 2025年遼寧省安全員《A證》考試題庫
- 多源數(shù)據(jù)融合平臺建設方案
- 2023-2024學年上海市普陀區(qū)三年級(上)期末數(shù)學試卷
- 居家養(yǎng)老上門服務投標文件
- 浙江省寧波市鄞州區(qū)2024年七年級上學期期末數(shù)學試題【含答案】
- 浙江省杭州市錢塘區(qū)2023-2024學年四年級上學期語文期末試卷
- GB/T 44713-2024節(jié)地生態(tài)安葬服務指南
- 2024年形勢與政策 第一講《讀懂中國式現(xiàn)代化》
- 2024-2025學年蘇教版四年級上冊期末自主測試數(shù)學試卷(一)(含答案解析)
- 光伏發(fā)電系統(tǒng)數(shù)據(jù)采集規(guī)范指南
- 2024年天津三源電力集團限公司社會招聘33人高頻難、易錯點500題模擬試題附帶答案詳解
- 校(園)廉政風險防控預警處置制度
評論
0/150
提交評論