版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
河南省創(chuàng)新發(fā)展聯(lián)盟2025屆高二數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知雙曲線的左、右焦點分別為,半焦距為c,過點作一條漸近線的垂線,垂足為P,若的面積為,則該雙曲線的離心率為()A.3 B.2C. D.2.“”是“方程表示雙曲線”的A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件3.“冰雹猜想”數(shù)列滿足:,,若,則()A.4 B.3C.2 D.14.已知,,若,則()A.6 B.11C.12 D.225.若定義在R上的函數(shù)滿足,則不等式的解集為()A. B.C. D.6.我國古代的數(shù)學(xué)名著《九章算術(shù)》中有“衰分問題”:今有女子善織,日自倍,五日織五尺,問次日織幾問?其意為:一女子每天織布的尺數(shù)是前一天的2倍,5天共織布5尺,請問第二天織布的尺數(shù)是()A. B.C. D.7.若雙曲線的漸近線方程為,則實數(shù)a的值為()A B.C.2 D.8.已知橢圓的左右焦點分別為,,點B為短軸的一個端點,則的周長為()A.20 B.18C.16 D.99.已知函數(shù),在定義域內(nèi)任取一點,則使的概率是()A. B.C. D.10.“”是“圓與軸相切”的()A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件11.已知橢圓的長軸長是短軸長的倍,左焦點、右頂點和下頂點分別為,坐標(biāo)原點到直線的距離為,則的面積為()A. B.4C. D.12.已知各項均為正數(shù)且單調(diào)遞減的等比數(shù)列滿足、、成等差數(shù)列.其前項和為,且,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若正四棱柱的底面邊長為5,側(cè)棱長為4,則此正四棱柱的體積為______14.阿波羅尼斯與阿基米德、歐幾里得被稱為亞歷山大時期的數(shù)學(xué)三巨匠.“阿波羅尼斯圓”是他的代表成果之一:平面上動點P到兩定點A,B的距離之比滿足(且,t為常數(shù)),則點的軌跡為圓.已知在平面直角坐標(biāo)系中,,,動點P滿足,則P點的軌跡為圓,該圓方程為_________;過點的直線交圓于兩點,且,則_________15.若在數(shù)列的每相鄰兩項之間插入此兩項的和,可形成新的數(shù)列,再把所得數(shù)列按照同樣的方法不斷進(jìn)行構(gòu)造,又可以得到新的數(shù)列.現(xiàn)將數(shù)列1,2進(jìn)行構(gòu)造,第1次得到數(shù)列1,3,2;第2次得到數(shù)列1,4,3,5,2;依次構(gòu)造,第次得到數(shù)列1,,,,…,,2;記則______,設(shè)數(shù)列的前n項和為,則______16.雙曲線的一條漸近線的一個方向向量為,則______(寫出一個即可)三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知曲線:.(1)若曲線是雙曲線,求的取值范圍;(2)設(shè),已知過曲線的右焦點,傾斜角為的直線交曲線于A,B兩點,求.18.(12分)圓心為的圓經(jīng)過點,,且圓心在上,(1)求圓的標(biāo)準(zhǔn)方程;(2)過點作直線交圓于且,求直線的方程.19.(12分)如圖,在長方體中,,,是棱的中點(1)求證:;(2)求平面與平面夾角的余弦值;(3)在棱上是否存在一點,使得與平面所成角的正弦值為,若存在,求出的長;若不存在,請說明理由20.(12分)已知橢圓過點,且離心率.(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)若動點在橢圓上,且在第一象限內(nèi),點分別為橢圓的左、右頂點,直線分別與橢圓C交于點,過作直線的平行線與橢圓交于點,問直線是否過定點,若經(jīng)過定點,求出該定點的坐標(biāo);若不經(jīng)過定點,請說明理由.21.(12分)已知動點M到點F(0,)的距離與它到直線的距離相等(1)求動點M的軌跡C的方程;(2)過點P(,-1)作C的兩條切線PA,PB,切點分別為A,B,求直線AB的方程22.(10分)橢圓:()的離心率為,遞增直線過橢圓的左焦點,且與橢圓交于兩點,若,求直線的斜率.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】根據(jù)給定條件求出,再計算面積列式計算作答.【詳解】依題意,點,由雙曲線對稱性不妨取漸近線,即,則,令坐標(biāo)原點為O,中,,又點O是線段的中點,因此,,則有,即,,,所以雙曲線的離心率為故選:D2、A【解析】方程表示雙曲線則,解得,是“方程表示雙曲線”的充分不必要條件.故選:A3、A【解析】根據(jù)題意分別假設(shè)為奇數(shù)、偶數(shù)的情況,求出對應(yīng)的即可.【詳解】由題意知,因為,若為奇數(shù)時,,與為奇數(shù)矛盾,不符合題意;若為偶數(shù)時,,可得,符合題意.不符合故選:A4、C【解析】根據(jù)遞推關(guān)系式計算即可求出結(jié)果.【詳解】因為,,,則,,,故選:C.5、B【解析】構(gòu)造函數(shù),根據(jù)題意,求得其單調(diào)性,利用函數(shù)單調(diào)性解不等式即可.【詳解】構(gòu)造函數(shù),則,故在上單調(diào)遞減;又,故可得,則,即,解得,故不等式解集為.故選:B.【點睛】本題考察利用導(dǎo)數(shù)研究函數(shù)單調(diào)性,以及利用函數(shù)單調(diào)性求解不等式,解決本題的關(guān)鍵是根據(jù)題意構(gòu)造函數(shù),屬中檔題.6、C【解析】根據(jù)等比數(shù)列求和公式求出首項即可得解.【詳解】由題可得該女子每天織布的尺數(shù)成等比數(shù)列,設(shè)其首項為,公比為,則,解得所以第二天織布的尺數(shù)為.故選:C7、D【解析】由雙曲線的漸近線方程結(jié)合已知可得.【詳解】雙曲線方程為所以漸近線為,故,解得:.故選:D8、B【解析】根據(jù)橢圓的定義求解【詳解】由橢圓方程知,所以,故選:B9、A【解析】解不等式,根據(jù)與長度有關(guān)的幾何概型即可求解.【詳解】由題意得,即,由幾何概型得,在定義域內(nèi)任取一點,使的概率是.故選:A.10、A【解析】根據(jù)充分不必要條件的定義和圓心到軸的距離求出可得答案.【詳解】時,圓的圓心坐標(biāo)為,半徑為2,此時圓與軸相切;當(dāng)圓與軸相切時,因為圓的半徑為2,所以圓心到軸的距離為,所以,“”是“圓與軸相切”的充分不必要條件故選:A11、C【解析】設(shè),根據(jù)題意,可知的方程為直線,根據(jù)原點到直線的距離建立方程,求出,進(jìn)而求出,的值,以及到直線的距離,再根據(jù)面積公式,即可求出結(jié)果.【詳解】設(shè),由題意可知,其中,所以的方程為,即所以原點到直線的距離為,所以,即,;所以直線的方程為,所以到直線的距離為;又,所以的面積為.故選:C.12、C【解析】先根據(jù),,成等差數(shù)列以及單調(diào)遞減,求出公比,再由即可求出,再根據(jù)等比數(shù)列通項公式以及前項和公式即可求出.【詳解】解:由,,成等差數(shù)列,得:,設(shè)的公比為,則,解得:或,又單調(diào)遞減,,,解得:,數(shù)列的通項公式為:,.故選:C二、填空題:本題共4小題,每小題5分,共20分。13、100【解析】根據(jù)棱柱體積公式直接可得.【詳解】故答案為:10014、①.②.【解析】設(shè),根據(jù)可得圓的方程,利用垂徑定理可求.【詳解】設(shè),則,整理得到,即.因為,故為的中點,過圓心作的垂線,垂足為,則為的中點,則,故,解得,故答案為:,.15、①.81②.【解析】根據(jù)數(shù)列的構(gòu)造寫出前面幾次得到的新數(shù)列,尋找規(guī)律,構(gòu)造等比數(shù)列,求出通項公式,再進(jìn)行求和.【詳解】第1次得到數(shù)列1,3,2,此時;第2次得到數(shù)列1,4,3,5,2,此時;第3次得到數(shù)列1,5,4,7,3,8,5,7,2,此時;第4次得到數(shù)列1,6,5,9,4,11,7,10,3,11,8,13,5,12,7,9,2,此時,故81,且故,又,所以數(shù)列是以為首項,公比為3的等比數(shù)列,所以,故,所以故答案為:81,16、(答案不唯一)【解析】寫出雙曲線的漸近線方程,結(jié)合方向向量的定義求即可.【詳解】由題設(shè),雙曲線的漸近線方程為,又是一條漸近線的一個方向向量,所以或或或,所以或.故答案為:(答案不唯一)三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)利用雙曲線的標(biāo)準(zhǔn)方程直接列不等式組,即可求解;(2)先求出直線l的方程為:,利用“設(shè)而不求法”和弦長公式求弦長.【小問1詳解】要使曲線:為雙曲線,只需,解得:,即的取值范圍.【小問2詳解】當(dāng)m=0時,曲線C的方程為,可得,所以右焦點,由題意可得直線l的方程為:.設(shè),聯(lián)立整理可得:,可得:所以弦長,所以18、(1);(2)或.【解析】(1)求出線段的垂直平分線方程,求出此直線與已知直線的交點坐標(biāo)即為圓心坐標(biāo),再求得半徑后可得圓的標(biāo)準(zhǔn)方程;(2)檢驗直線斜率不存在時是否滿足題意,在斜率存在時設(shè)方程為,求得圓心到直線的距離,由勾股定理得弦長,由弦長為8得參數(shù),得直線方程【詳解】(1)由已知,中點坐標(biāo)為,垂直平分線方程為則由解得,所以圓心,因此半徑所以圓的標(biāo)準(zhǔn)方程(2)由可得圓心到直線的距離當(dāng)直線斜率不存在時,其方程為,當(dāng)直線斜率存在時,設(shè)其方程為,則,解得,此時其方程為,所以直線方程為或.【點睛】方法點睛:本題考查求圓的標(biāo)準(zhǔn)方程,考查直線與圓相交弦長.求弦長方法是幾何法:即求出圓心到弦所在直線距離,由勾股定理求得弦長.求直線方程時注意檢驗直線斜率不存在的情形19、(1)證明見解析(2)(3)存點,【解析】(1)先證明平面,由平面,可證明結(jié)論.(2)以分別為軸,建立空間直角坐標(biāo)系,分別求出平面與平面的法向量,利用向量法求求解即可.(3)設(shè),,則,則由向量法結(jié)合條件可得答案.【詳解】(1)在長方體中,,又,所以平面又平面,所以.(2)以分別為軸,建立空間直角坐標(biāo)系因為,,是棱的中點則則為平面的一個法向量.設(shè)為平面的一個法向量.,所以,即取,可得所以如圖平面與平面夾角為銳角,所以平面與平面夾角的余弦值為.(3)設(shè),,則由(2)平面的一個法向量設(shè)與平面所成角為則解得,取所以存在點,滿足條件.20、(1)(2)過定點,【解析】(1)根據(jù)橢圓上的點及離心率求出a,b即可;(2)設(shè)點,設(shè)直線的方程為,聯(lián)立方程,得到根與系數(shù)的關(guān)系,利用條件化簡,結(jié)合橢圓方程,求出即可得解.【小問1詳解】由,有,又,所以,橢圓C的標(biāo)準(zhǔn)方程為.【小問2詳解】設(shè)點,設(shè)直線的方程為.如圖,聯(lián)立,消有:,韋達(dá)定理有:由,所以,又,所以又,所以.又所以有,把代入有:,解得或2,又直線不過右端點,所以,則,所以直線過定點.21、(1)(2)【解析】(1)根據(jù)拋物線的定義或者直接列式化簡即可求出;(2)方法一:設(shè)切線的方程為:,與拋物線方程聯(lián)立,由即可求出的值,從而得出點的坐標(biāo),即可求出直線方程【小問1詳解】設(shè)M(x,y),則解得.所以該拋物線的方程為【小問2詳解】[方法一]:依題意,切線的斜率存在,設(shè)切線的方程為:,與拋物線方程聯(lián)立,得,令,得或.從而或,解得或,所以切點A(-1,),B(2,2),直線AB
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版家用空調(diào)租賃及安裝維修一體化合同3篇
- 二零二五版國有土地儲備中心資產(chǎn)置換專項合同3篇
- 二零二五年智慧環(huán)保產(chǎn)業(yè)園區(qū)建設(shè)補(bǔ)貼協(xié)議范本3篇
- 二零二五版旅游度假區(qū)與旅游院校合作共建人才培養(yǎng)合同6篇
- 武漢華夏理工學(xué)院《土木工程施工技術(shù)A》2023-2024學(xué)年第一學(xué)期期末試卷
- 二零二五年紅酒年份品鑒代理銷售授權(quán)協(xié)議3篇
- 2024食用油綠色環(huán)保包裝設(shè)計制作合同3篇
- 2024年項目合作協(xié)議書模板
- 2024年食品工廠代加工食品安全責(zé)任合同范本2篇
- 二零二五年度車位買賣與車位抵押合同范本2篇
- 2023年河南省公務(wù)員錄用考試《行測》真題及答案解析
- 2024年安徽省公務(wù)員錄用考試《行測》真題及答案解析
- 山西省太原市重點中學(xué)2025屆物理高一第一學(xué)期期末統(tǒng)考試題含解析
- 充電樁項目運營方案
- 2024年農(nóng)民職業(yè)農(nóng)業(yè)素質(zhì)技能考試題庫(附含答案)
- 高考對聯(lián)題(對聯(lián)知識、高考真題及答案、對應(yīng)練習(xí)題)
- 新版《鐵道概論》考試復(fù)習(xí)試題庫(含答案)
- 【律師承辦案件費用清單】(計時收費)模板
- 高中物理競賽真題分類匯編 4 光學(xué) (學(xué)生版+解析版50題)
- Unit1FestivalsandCelebrations詞匯清單高中英語人教版
- 2024年上海市中考語文試題卷(含答案)
評論
0/150
提交評論