版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
重慶市永川區(qū)2025屆高二上數(shù)學(xué)期末經(jīng)典試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知圓的圓心在x軸上,半徑為1,且過點(diǎn),圓:,則圓,的公共弦長(zhǎng)為A. B.C. D.22.如圖,O是坐標(biāo)原點(diǎn),P是雙曲線右支上的一點(diǎn),F(xiàn)是E的右焦點(diǎn),延長(zhǎng)PO,PF分別交E于Q,R兩點(diǎn),已知QF⊥FR,且,則E的離心率為()A. B.C. D.3.等軸雙曲線的中心在原點(diǎn),焦點(diǎn)在軸上,與拋物線的準(zhǔn)線交于兩點(diǎn),且則的實(shí)軸長(zhǎng)為A.1 B.2C.4 D.84.已知空間向量,,則()A. B.19C.17 D.5.已知命題對(duì)任意,總有;是方程的根則下列命題為真命題的是A. B.C. D.6.已知,,則在上的投影向量為()A.1 B.C. D.7.直線在y軸上的截距是A. B.C. D.8.已知橢圓的左,右焦點(diǎn)分別為,,直線與C交于點(diǎn)M,N,若四邊形的面積為且,則C的離心率為()A. B.C. D.9.已知,則下列說法錯(cuò)誤的是()A.若,分別是直線,的方向向量,則直線,所成的角的余弦值是B.若,分別是直線l的方向向量與平面的法向量,則直線l與平面所成的角的正弦值是C.若,分別是平面,的法向量,則平面,所成的角的余弦值是D.若,分別是直線l的方向向量與平面的法向量,則直線l與平面所成的角的正弦值是10.如圖,在平行六面體中,設(shè),,,用基底表示向量,則()A. B.C. D.11.下列事件:①連續(xù)兩次拋擲同一個(gè)骰子,兩次都出現(xiàn)2點(diǎn);②某人買彩票中獎(jiǎng);③從集合中任取兩個(gè)不同元素,它們的和大于2;④在標(biāo)準(zhǔn)大氣壓下,水加熱到90℃時(shí)會(huì)沸騰.其中是隨機(jī)事件的個(gè)數(shù)是()A.1 B.2C.3 D.412.直線與圓的位置關(guān)系是()A.相切 B.相交C.相離 D.不確定二、填空題:本題共4小題,每小題5分,共20分。13.若圓C:與圓D2的公共弦長(zhǎng)為,則圓D的半徑為___________.14.設(shè)等差數(shù)列,前項(xiàng)和分別為,,若對(duì)任意自然數(shù)都有,則的值為______.15.已知拋物線的焦點(diǎn)F恰好是橢圓的右焦點(diǎn),且兩條曲線交點(diǎn)的連線過點(diǎn)F,則該橢圓的離心率為____________16.正方體,點(diǎn)分別是的中點(diǎn),則異面直線與所成角的余弦值為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)求函數(shù)f(x)的單調(diào)區(qū)間;(2)若f(x)≥0對(duì)定義域內(nèi)的任意x恒成立,求實(shí)數(shù)a的取值范圍.18.(12分)已知是等差數(shù)列,其n前項(xiàng)和為,已知(1)求數(shù)列的通項(xiàng)公式:(2)設(shè),求數(shù)列的前n項(xiàng)和19.(12分)如圖,在平面直角標(biāo)系中,已知n個(gè)圓與x軸和線均相切,且任意相鄰的兩個(gè)圓外切,其中圓.(1)求數(shù)列通項(xiàng)公式;(2)記n個(gè)圓的面積之和為S,求證:.20.(12分)已知函數(shù)(m≥0).(1)當(dāng)m=0時(shí),求曲線在點(diǎn)(1,f(1))處的切線方程;(2)若函數(shù)的最小值為,求實(shí)數(shù)m的值.21.(12分)已知圓的圓心為,且經(jīng)過點(diǎn).(1)求圓的標(biāo)準(zhǔn)方程;(2)已知直線與圓相交于、兩點(diǎn),求.22.(10分)如圖,在正方體中,E為的中點(diǎn)(Ⅰ)求證:平面;(Ⅱ)求直線與平面所成角的正弦值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】根據(jù)題意設(shè)圓方程為:,代點(diǎn)即可求出,進(jìn)而求出方程,兩圓方程做差即可求得公共弦所在直線方程,再利用垂徑定理去求弦長(zhǎng).【詳解】設(shè)圓的圓心為,則其標(biāo)準(zhǔn)方程為:,將點(diǎn)代入方程,解得,故方程為:,兩圓,方程作差得其公共弦所在直線方程為:,圓心到該直線的距離為,因此公共弦長(zhǎng)為,故選:A.【點(diǎn)睛】本題綜合考查圓的方程及直線與圓,圓與圓位置關(guān)系,屬于中檔題.一般遇見直線與圓相交問題時(shí),常利用垂徑定理解決問題.2、B【解析】令雙曲線E的左焦點(diǎn)為,連線即得,設(shè),借助雙曲線定義及直角用a表示出|PF|,,再借助即可得解.【詳解】如圖,令雙曲線E的左焦點(diǎn)為,連接,由對(duì)稱性可知,點(diǎn)線段中點(diǎn),則四邊形是平行四邊形,而QF⊥FR,于是有是矩形,設(shè),則,,,在中,,解得或m=0(舍去),從而有,中,,整理得,,所以雙曲線E的離心率為故選:B3、B【解析】設(shè)等軸雙曲線的方程為拋物線,拋物線準(zhǔn)線方程為設(shè)等軸雙曲線與拋物線的準(zhǔn)線的兩個(gè)交點(diǎn),,則,將,代入,得等軸雙曲線的方程為的實(shí)軸長(zhǎng)為故選4、D【解析】先求出的坐標(biāo),再求出其?!驹斀狻恳?yàn)椋?,所以,故,故選:D.5、A【解析】由絕對(duì)值的意義可知命題p為真命題;由于,所以命題q為假命題;因此為假命題,為真命題,“且”字聯(lián)結(jié)的命題只有當(dāng)兩命題都真時(shí)才是真命題,所以答案選A6、C【解析】根據(jù)題意得,進(jìn)而根據(jù)投影向量的概念求解即可.【詳解】解:因?yàn)?,,所以,所以,所以在上的投影向量為故選:C7、D【解析】在y軸上的截距只需令x=0求出y的值即可得出.【詳解】令x=0,則y=-2,即直線在y周上的截距為-2,故選D.8、A【解析】根據(jù)題意可知四邊形為平行四邊形,設(shè),進(jìn)而得,根據(jù)四邊形面積求出點(diǎn)M的坐標(biāo),再代入橢圓方程得出關(guān)于e的方程,解方程即可.【詳解】如圖,不妨設(shè)點(diǎn)在第一象限,由橢圓的對(duì)稱性得四邊形為平行四邊形,設(shè)點(diǎn),由,得,因?yàn)樗倪呅蔚拿娣e為,所以,得,由,得,解得,所以,即點(diǎn),代入橢圓方程,得,整理得,由,得,解得,由,得.故選:A9、D【解析】利用空間角的意義結(jié)合空間向量求空間角的方法逐一分析各選項(xiàng)即可判斷作答.【詳解】對(duì)于A,因分別是直線的方向向量,且,直線所成的角為,則,A正確;對(duì)于B,D,因分別是直線l的方向向量與平面的法向量,且,直線l與平面所成的角為,則有,B正確,D錯(cuò)誤;對(duì)于C,因分別是平面的法向量,且,平面所成的角為,則不大于,,C正確.故選:D10、B【解析】直接利用空間向量基本定理求解即可【詳解】因?yàn)樵谄叫辛骟w中,,,,所以,故選:B11、B【解析】因?yàn)殡S機(jī)事件指的是在一定條件下,可能發(fā)生,也可能不發(fā)生的事件,只需逐一判斷4個(gè)事件哪一個(gè)符合這種情況即可【詳解】解:連續(xù)兩次拋擲同一個(gè)骰子,兩次都出現(xiàn)2點(diǎn)這一事件可能發(fā)生也可能不發(fā)生,①是隨機(jī)事件某人買彩票中獎(jiǎng)這一事件可能發(fā)生也可能不發(fā)生,②是隨機(jī)事件從集合,2,中任取兩個(gè)元素,它們的和必大于2,③是必然事件在標(biāo)準(zhǔn)大氣壓下,水加熱到時(shí)才會(huì)沸騰,④是不可能事件故隨機(jī)事件有2個(gè),故選:B12、B【解析】直線恒過定點(diǎn),而此點(diǎn)在圓的內(nèi)部,故可得直線與圓的位置關(guān)系.【詳解】直線恒過定點(diǎn),而,故點(diǎn)在圓的內(nèi)部,故直線與圓的位置關(guān)系為相交,故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】首先根據(jù)圓與圓的位置關(guān)系得到公共弦方程,再根據(jù)弦長(zhǎng)求解即可.【詳解】根據(jù)得公共弦方程為:.因?yàn)楣蚕议L(zhǎng)為,所以直線過圓的圓心.所以,解得.故答案為:14、【解析】由等差數(shù)列的性質(zhì)可得:.再利用已知即可得出【詳解】由等差數(shù)列的性質(zhì)可得:對(duì)于任意的都有,則故答案為:【點(diǎn)睛】本題考查了等差數(shù)列的性質(zhì),求和公式,考查了推理能力與計(jì)算能力,屬于中檔題15、【解析】設(shè)兩條曲線交點(diǎn)為根據(jù)橢圓和拋物線對(duì)稱性知,不妨點(diǎn)A在第一象限,由A在拋物線上得,A在橢圓上得.則由條件得:.解得(舍去)16、【解析】以為坐標(biāo)原點(diǎn)建立空間直角坐標(biāo)系,根據(jù)異面直線所成角的向量求法可求得結(jié)果.【詳解】以為坐標(biāo)原點(diǎn),為軸可建立如圖所示空間直角坐標(biāo)系,設(shè)正方體棱長(zhǎng)為,則,,,,,,,即異面直線與所成角的余弦值為.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)答案見解析(2)【解析】(1)求導(dǎo)數(shù),然后對(duì)進(jìn)行分類討論,利用導(dǎo)數(shù)的正負(fù),可得函數(shù)的單調(diào)區(qū)間;(2)利用(1)中函數(shù)的單調(diào)性,求得函數(shù)在處取得最小值,即可求實(shí)數(shù)的取值范圍.【小問1詳解】解:求導(dǎo)可得①時(shí),令可得,由于知;令,得∴函數(shù)在上單調(diào)遞減,在上單調(diào)遞增;②時(shí),令可得;令,得或,由于知或;∴函數(shù)在上單調(diào)遞減,在上單調(diào)遞增;③時(shí),,函數(shù)在上單調(diào)遞增;④時(shí),令可得;令,得或,由于知或∴函數(shù)在上單調(diào)遞減,在上單調(diào)遞增;【小問2詳解】由(1)時(shí),,(不符合,舍去)當(dāng)時(shí),在上單調(diào)遞減,在上單調(diào)遞增,故函數(shù)在處取得最小值,所以函數(shù)對(duì)定義域內(nèi)的任意x恒成立時(shí),只需要即可∴.綜上,.18、(1);(2).【解析】(1)利用等差數(shù)列的基本量,結(jié)合已知條件,列出方程組,求得首項(xiàng)和公差,即可寫出通項(xiàng)公式;(2)根據(jù)(1)中所求,結(jié)合裂項(xiàng)求和法,即可求得.【小問1詳解】因?yàn)槭堑炔顢?shù)列,其n前項(xiàng)和為,已知,設(shè)其公差為,故可得:,,解得,又,故.【小問2詳解】由(1)知,,又,故.即.19、(1).(2)證明見解析.【解析】(1)由已知得,設(shè)圓分別切軸于點(diǎn),過點(diǎn)作,垂足為.在從而有得,由等比數(shù)列的定義得數(shù)列是以為首項(xiàng),為公比的等比數(shù)列.由此求得答案;(2)由(1)得再由圓的面積公式和等比數(shù)列求和公式計(jì)算可得證.【小問1詳解】解:直線的傾斜角為則圓心在直線上,,設(shè)圓分別切軸于點(diǎn),過點(diǎn)作,垂足為.在中,所以即化簡(jiǎn)得,變形得,所以是以為首項(xiàng),為公比的等比數(shù)列.,.【小問2詳解】解:由(1)得所以,所以.20、(1)(2)【解析】(1)求導(dǎo),利用導(dǎo)函數(shù)的幾何意義求解切線方程的斜率,進(jìn)而求出切線方程;(2)對(duì)導(dǎo)函數(shù)再次求導(dǎo),判斷其單調(diào)性,結(jié)合隱零點(diǎn)求出其最小值,列出方程,求出實(shí)數(shù)m的值.【小問1詳解】當(dāng)時(shí),因?yàn)?,所以切線的斜率為,所以切線方程為,即.【小問2詳解】因?yàn)?,令,因?yàn)?,所以在上單調(diào)遞增,當(dāng)實(shí)數(shù)時(shí),,;當(dāng)實(shí)數(shù)時(shí),,;當(dāng)實(shí)數(shù)時(shí),,所以總存在一個(gè),使得,且當(dāng)時(shí),;當(dāng)時(shí),,所以,令,因?yàn)?,所以單調(diào)遞減,又,所以時(shí),所以,即.21、(1);(2).【解析】(1)求出圓的半徑長(zhǎng),結(jié)合圓心坐標(biāo)可得出圓的標(biāo)準(zhǔn)方程;(2)求出圓心到直線的距離,利用勾股定理可求得.小問1詳解】解:圓的半徑為,因此,圓的標(biāo)準(zhǔn)方程為.【小問2詳解】解:圓心到直線的距離為,因此,.22、(Ⅰ)證明見解析;(Ⅱ).【解析】(Ⅰ)證明出四邊形為平行四邊形,可得出,然后利用線面平行的判定定理可證得結(jié)論;也可利用空間向量計(jì)算證明;(Ⅱ)可以將平面擴(kuò)展,將線面角轉(zhuǎn)化,利用幾何方法作出線面角,然后計(jì)算;也可以建立空間直角坐標(biāo)系,利用空間向量計(jì)算求解.【詳解】(Ⅰ)[方法一]:幾何法如下圖所示:在正方體中,且,且,且,所以,四邊形為平行四邊形,則,平面,平面,平面;[方法二]:空間向量坐標(biāo)法以點(diǎn)為坐標(biāo)原點(diǎn),、、所在直線分別為、、軸建立如下圖所示的空間直角坐標(biāo)系,設(shè)正方體的棱長(zhǎng)為,則、、、,,,設(shè)平面的法向量為,由,得,令,則,,則.又∵向量,,又平面,平面;(Ⅱ)[方法一]:幾何法延長(zhǎng)到,使得,連接,交于,又∵,∴四邊形為平行四邊形,∴,又∵,∴,所以平面即平面,連接,作,垂足為,連接,∵平面,平面,∴,又∵,∴直線平面,又∵直線平面,∴平面平面,∴在平面中的射影在直線上,∴直線為直線在平面中的射影,∠為直線與平面所成的角,根據(jù)直線直線,可知∠為直線與平面所成的角.設(shè)正方體的棱長(zhǎng)為2,則,,∴,∴,∴,即直線與平面所成角的正弦值為.[方法二]:向量法接續(xù)(I)的向量方法,求得平面平面的法向量,又∵,∴,∴直線與平面所成角的正弦值為.[方法三]:幾何法+體積法如圖,設(shè)的中點(diǎn)為F,延長(zhǎng),易證三線交于一點(diǎn)P因?yàn)?,所以直線與平面所成的角,即直線與平面所成的角設(shè)正方體的棱長(zhǎng)為2,在中,易得,可得由,得,整理得所以所以直線與平面所成角的正弦值為[方法四]:純體積法設(shè)正方體的棱長(zhǎng)為2,點(diǎn)到
溫馨提示
- 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年返銷魚鉤項(xiàng)目可行性研究報(bào)告
- 2024-2027年中國(guó)民用雷達(dá)行業(yè)運(yùn)行態(tài)勢(shì)及未來發(fā)展趨勢(shì)預(yù)測(cè)報(bào)告
- 2025年中國(guó)長(zhǎng)筒襪市場(chǎng)規(guī)模預(yù)測(cè)及投資戰(zhàn)略咨詢報(bào)告
- 二零二五年度綠色建筑項(xiàng)目合同變更補(bǔ)充條款3篇
- 二零二五年度樓頂場(chǎng)地租賃與旅游開發(fā)合同4篇
- 二零二五版美團(tuán)外賣加盟店信息保密合同3篇
- 2025年度環(huán)保設(shè)備研發(fā)與制造合同(二零二五年度)3篇
- 2025年度房產(chǎn)租賃代理傭金合同范本4篇
- 二零二五年度苗木苗圃定向種植與城鄉(xiāng)融合發(fā)展合同范本4篇
- 2025年度大型活動(dòng)臨時(shí)設(shè)施勞務(wù)分包合同4篇
- 2025年蛇年春聯(lián)帶橫批-蛇年對(duì)聯(lián)大全新春對(duì)聯(lián)集錦
- 表B. 0 .11工程款支付報(bào)審表
- 警務(wù)航空無(wú)人機(jī)考試題庫(kù)及答案
- 空氣自動(dòng)站儀器運(yùn)營(yíng)維護(hù)項(xiàng)目操作說明以及簡(jiǎn)單故障處理
- 新生兒窒息復(fù)蘇正壓通氣課件
- 2022年12月Python-一級(jí)等級(jí)考試真題(附答案-解析)
- 法律顧問投標(biāo)書
- 班主任培訓(xùn)簡(jiǎn)報(bào)4篇(一)
- 成都市數(shù)學(xué)八年級(jí)上冊(cè)期末試卷含答案
- T-CHSA 020-2023 上頜骨缺損手術(shù)功能修復(fù)重建的專家共識(shí)
- 危重癥患者轉(zhuǎn)運(yùn)指南-課件
評(píng)論
0/150
提交評(píng)論