版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
湖南省衡陽(yáng)八中2025屆數(shù)學(xué)高二上期末考試模擬試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無(wú)效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知雙曲線C:-=1(a>b>0)的左焦點(diǎn)為F1,若過(guò)原點(diǎn)傾斜角為的直線與雙曲線C左右兩支交于M、N兩點(diǎn),且MF1NF1,則雙曲線C的離心率是()A.2 B.C. D.2.四棱錐中,底面ABCD是平行四邊形,點(diǎn)E為棱PC的中點(diǎn),若,則等于()A.1 B.C. D.23.?dāng)?shù)列中前項(xiàng)和滿足,若是遞增數(shù)列,則的取值范圍為()A. B.C. D.4.在中,角,,所對(duì)的邊分別為,,,若,則的形狀為()A.銳角三角形 B.直角三角形C.鈍角三角形 D.不確定5.在等比數(shù)列中,若,則公比()A. B.C.2 D.36.已知數(shù)列滿足,則()A. B.C. D.7.已知雙曲線的離心率為2,則()A.2 B.C. D.18.在中國(guó),周朝時(shí)期的商高提出了“勾三股四弦五”的勾股定理的特例.在西方,最早提出并證明此定理的為公元前世紀(jì)古希臘的畢達(dá)哥拉斯學(xué)派,他們用演繹法證明了直角三角形斜邊平方等于兩直角邊平方之和.若一個(gè)直角三角形的斜邊長(zhǎng)等于則這個(gè)直角三角形周長(zhǎng)的最大值為()A. B.C. D.9.已知點(diǎn)為直線上任意一點(diǎn),為坐標(biāo)原點(diǎn).則以為直徑的圓除過(guò)定點(diǎn)外還過(guò)定點(diǎn)()A. B.C. D.10.《周髀算經(jīng)》是中國(guó)最古老的天文學(xué)和數(shù)學(xué)著作,書中提到:冬至、小寒、大寒、立春、雨水、驚蟄、春分、清明、谷雨、立夏、小滿、芒種這十二個(gè)節(jié)氣的日影子長(zhǎng)依次成等差數(shù)列.若冬至、大寒、雨水的日影子長(zhǎng)的和是尺,芒種的日影子長(zhǎng)為尺,則冬至的日影子長(zhǎng)為()A.尺 B.尺C.尺 D.尺11.平行六面體中,若,則()A. B.1C. D.12.若點(diǎn),在拋物線上,是坐標(biāo)原點(diǎn),若等邊三角形的面積為,則該拋物線的方程是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.知函數(shù),若函數(shù)有兩個(gè)不同的零點(diǎn),則實(shí)數(shù)的取值范圍為_____________.14.過(guò)拋物線的焦點(diǎn)作直線交拋物線于兩點(diǎn),為坐標(biāo)原點(diǎn),記直線的斜率分別為,則______.15.設(shè)分別是平面的法向量,若,則實(shí)數(shù)的值是________16.圓錐曲線的焦點(diǎn)在軸上,離心率為,則實(shí)數(shù)的值是__________.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)求下列函數(shù)的導(dǎo)數(shù):(1);(2).18.(12分)已知拋物線的焦點(diǎn)為,直線與拋物線交于,兩點(diǎn),且(1)求拋物線的方程;(2)若,是拋物線上一點(diǎn),過(guò)點(diǎn)的直線與拋物線交于,兩點(diǎn)(均與點(diǎn)不重合),設(shè)直線,的斜率分別為,,求證:為定值19.(12分)已知是拋物線上的焦點(diǎn),是拋物線上的一個(gè)動(dòng)點(diǎn),若動(dòng)點(diǎn)滿足,則的軌跡方程.20.(12分)已知直三棱柱中,,,E、F分別是、的中點(diǎn),D為棱上的點(diǎn).(1)證明:;(2)當(dāng)時(shí),求直線BF與平面DEF所成角的正弦值.21.(12分)如圖,已知拋物線的焦點(diǎn)為,點(diǎn)是軸上一定點(diǎn),過(guò)的直線交與兩點(diǎn).(1)若過(guò)的直線交拋物線于,證明縱坐標(biāo)之積為定值;(2)若直線分別交拋物線于另一點(diǎn),連接交軸于點(diǎn).證明:成等比數(shù)列.22.(10分)已知直線l過(guò)定點(diǎn)(1)若直線l與直線垂直,求直線l的方程;(2)若直線l在兩坐標(biāo)軸上的截距相等,求直線l的方程
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】根據(jù)雙曲線和直線的對(duì)稱性,結(jié)合矩形的性質(zhì)、雙曲線的定義、離心率公式、余弦定理進(jìn)行求解即可.【詳解】設(shè)雙曲線的右焦點(diǎn)為F2,過(guò)原點(diǎn)傾斜角為的直線為,設(shè)M、N分別在第三、第一象限,由雙曲線和直線的對(duì)稱性可知:M、N兩點(diǎn)關(guān)于原點(diǎn)對(duì)稱,而MF1NF1,因此四邊形是矩形,而,所以是等邊三角形,故,因此,因?yàn)?,所以,在等腰三角形中,由余弦定理可知:,由矩形的性質(zhì)可知:,由雙曲線的定義可知:,故選:C【點(diǎn)睛】關(guān)鍵點(diǎn)睛:利用矩形的性質(zhì)、雙曲線的定義是解題的關(guān)鍵.2、B【解析】運(yùn)用向量的線性運(yùn)用表示向量,對(duì)照系數(shù),求得,代入可得選項(xiàng).【詳解】因?yàn)?,所以,所以,所以,解得,所以,故選:B.3、B【解析】由已知求得,再根據(jù)當(dāng)時(shí),,,可求得范圍.【詳解】解:因?yàn)?,則,兩式相減得,因?yàn)槭沁f增數(shù)列,所以當(dāng)時(shí),,解得,又,,所以,解得,綜上得,故選:B.4、C【解析】由正弦定理得出,再由余弦定理得出,從而判斷為鈍角得出的形狀.【詳解】因?yàn)椋?,所以,所以的形狀為鈍角三角形.故選:C5、C【解析】由題得,化簡(jiǎn)即得解.【詳解】因?yàn)椋?,所以,解?故選:C6、D【解析】根據(jù)給定條件求出數(shù)列的通項(xiàng)公式,再利用裂項(xiàng)相消法即可計(jì)算作答.【詳解】因,則,所以,所以.故選:D7、D【解析】由雙曲線的性質(zhì),直接表示離心率,求.【詳解】由雙曲線方程可知,因?yàn)?,所以,解得:,又,所?故選:D【點(diǎn)睛】本題考查雙曲線基本性質(zhì),意在考查數(shù)形結(jié)合分析問(wèn)題和解決問(wèn)題能力,屬于中檔題型,一般求雙曲線離心率的方法:
直接法:直接求出,然后利用公式求解;2.公式法:,3.構(gòu)造法:根據(jù)條件,可構(gòu)造出的齊次方程,通過(guò)等式兩邊同時(shí)除以,進(jìn)而得到關(guān)于的方程.8、C【解析】設(shè)直角三角形的兩條直角邊邊長(zhǎng)分別為,則,根據(jù)基本不等式求出的最大值后,可得三角形周長(zhǎng)的最大值.【詳解】設(shè)直角三角形的兩條直角邊邊長(zhǎng)分別為,則.因?yàn)?,所以,所以,?dāng)且僅當(dāng)時(shí),等號(hào)成立.故這個(gè)直角三角形周長(zhǎng)的最大值為故選:C9、D【解析】設(shè)垂直于直線,可知圓恒過(guò)垂足;兩條直線方程聯(lián)立可求得點(diǎn)坐標(biāo).【詳解】設(shè)垂直于直線,垂足為,則直線方程為:,由圓的性質(zhì)可知:以為直徑的圓恒過(guò)點(diǎn),由得:,以為直徑的圓恒過(guò)定點(diǎn).故選:D.10、D【解析】根據(jù)題意轉(zhuǎn)化為等差數(shù)列,求首項(xiàng).【詳解】設(shè)冬至的日影長(zhǎng)為,雨水的日影長(zhǎng)為,根據(jù)等差數(shù)列的性質(zhì)可知,芒種的日影長(zhǎng)為,,解得:,,所以冬至的日影長(zhǎng)為尺.故選:D11、D【解析】根據(jù)空間向量的運(yùn)算,表示出,和已知比較可求得的值,進(jìn)而求得答案.【詳解】在平行六面體中,有,故由題意可知:,即,所以,故選:D.12、A【解析】根據(jù)等邊三角形的面積求得邊長(zhǎng),根據(jù)角度求得點(diǎn)的坐標(biāo),代入拋物線方程求得的值.【詳解】設(shè)等邊三角形的邊長(zhǎng)為,則,解得根據(jù)拋物線的對(duì)稱性可知,且,設(shè)點(diǎn)在軸上方,則點(diǎn)的坐標(biāo)為,即,將代入拋物線方程得,解得,故拋物線方程為故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)分段函數(shù)的性質(zhì),結(jié)合冪函數(shù)、一次函數(shù)的單調(diào)性判斷零點(diǎn)的分布,進(jìn)而求m的范圍.【詳解】由解析式知:在上為增函數(shù)且,在上,時(shí)為單調(diào)函數(shù),時(shí)無(wú)零點(diǎn),故要使有兩個(gè)不同的零點(diǎn),即兩側(cè)各有一個(gè)零點(diǎn),所以在上必遞減且,則,可得.故答案為:14、【解析】過(guò)焦點(diǎn)作直線要分為有斜率和斜率不存在兩種情況進(jìn)行分類討論.【詳解】拋物線的焦點(diǎn)當(dāng)過(guò)焦點(diǎn)的直線斜率不存在時(shí),直線方程可設(shè)為,不妨令則,故當(dāng)過(guò)焦點(diǎn)的直線斜率存在時(shí),直線方程可設(shè)為,令由整理得則,綜上,故答案為:15、4【解析】根據(jù)分別是平面的法向量,且,則有求解.【詳解】因?yàn)榉謩e是平面的法向量,且所以所以解得故答案為:4【點(diǎn)睛】本題主要考查空間向量垂直,還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.16、【解析】根據(jù)圓錐曲線焦點(diǎn)在軸上且離心率小于1,確定a,b求解即可.【詳解】因?yàn)閳A錐曲線的焦點(diǎn)在軸上,離心率為,所以曲線為橢圓,且,所以,解得,故答案為:三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2).【解析】(1)根據(jù)導(dǎo)數(shù)的加法運(yùn)算法則,結(jié)合常見函數(shù)的導(dǎo)數(shù)進(jìn)行求解即可;(2)根據(jù)導(dǎo)數(shù)的加法和乘法的運(yùn)算法則,結(jié)合常見函數(shù)的導(dǎo)數(shù)進(jìn)行求解即可.【小問(wèn)1詳解】;【小問(wèn)2詳解】.18、(1)(2)證明見解析【解析】(1)聯(lián)立直線和拋物線方程,根據(jù)拋物線定義和焦半徑公式得到,根據(jù)韋達(dá)定理可得到最終結(jié)果;(2)代入點(diǎn)坐標(biāo)可得到參數(shù)的值,設(shè)直線的方程為,聯(lián)立該直線和拋物線方程,,代入韋達(dá)定理可得到最終結(jié)果.【小問(wèn)1詳解】設(shè)點(diǎn),,點(diǎn),,聯(lián)立,整理得,,由拋物線的定義知,解得,拋物線的方程為【小問(wèn)2詳解】,為拋物線上一點(diǎn),,即,設(shè),,,,直線的方程為,由,消去得,,,,即為定值19、【解析】由拋物線的方程可得到焦點(diǎn)坐標(biāo),設(shè),寫出向量的坐標(biāo),由向量間的關(guān)系得到,將點(diǎn)代入物線即可得到軌跡方程.【詳解】由拋物線可得:設(shè)①在上,將①代入可得:,即.【點(diǎn)睛】求軌跡方程,一般是求誰(shuí)設(shè)誰(shuí)的坐標(biāo)然后根據(jù)題目等式直接求解即可,而對(duì)于直線與曲線的綜合問(wèn)題要先分析題意轉(zhuǎn)化為等式,例如,可以轉(zhuǎn)化為向量坐標(biāo)進(jìn)行運(yùn)算也可以轉(zhuǎn)化為斜率來(lái)理解,然后借助韋達(dá)定理求解即可運(yùn)算此類題計(jì)算一定要仔細(xì).20、(1)證明見解析(2)【解析】(1)由題意建立如圖所示的空間直角坐標(biāo)系,利用空間向量證明即可,(2)求出平面DEF的法向量,利用空間向量求解【小問(wèn)1詳解】證明:因?yàn)槿庵侵比庵?,且,所以兩兩垂直,所以以為原點(diǎn),以所在的直線分別為軸建立空間直角坐標(biāo)系,則,,設(shè),則,所以,所以,所以【小問(wèn)2詳解】因?yàn)椋?,所以,設(shè)平面一個(gè)法向量為,則,令,則,設(shè)直線BF與平面DEF所成角為,則,所以直線BF與平面DEF所成角的正弦值為21、(1)證明見解析(2)證明見解析【解析】(1)設(shè)直線方程為,聯(lián)立拋物線方程用韋達(dá)定理可得;(2)借助(1)中結(jié)論可得各點(diǎn)縱坐標(biāo)之積,進(jìn)而得到F、T、Q三點(diǎn)橫坐標(biāo)關(guān)系,然后可證.【小問(wèn)1詳解】顯然過(guò)T的直線斜率不為0,設(shè)方程為,聯(lián)立,消元得到,.【小問(wèn)2詳解】由(1)設(shè),因?yàn)锳P與BQ均過(guò)T(t,0)點(diǎn),可知,又AB過(guò)F點(diǎn),所以,如圖:,,設(shè)M(n,
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 創(chuàng)業(yè)教育驅(qū)動(dòng)下的職業(yè)教育領(lǐng)域創(chuàng)新項(xiàng)目研究
- 創(chuàng)新中醫(yī)護(hù)理技術(shù)在提升醫(yī)療品質(zhì)的實(shí)踐應(yīng)用
- 2025年朔州貨運(yùn)從業(yè)資格證考試題
- 農(nóng)業(yè)科技創(chuàng)新成果轉(zhuǎn)化過(guò)程中的問(wèn)題與對(duì)策
- 2025年河南貨運(yùn)從業(yè)資格證考試試題帶答案的題目
- 2025年濮陽(yáng)考從業(yè)資格證貨運(yùn)試題
- 企業(yè)安全文化的培育與評(píng)估
- 2025年滁州貨運(yùn)資格證題庫(kù)下載安裝
- 2025年德陽(yáng)貨運(yùn)從業(yè)資格證模擬考試系統(tǒng)
- 健康管理服務(wù)的市場(chǎng)定位與發(fā)展趨勢(shì)分析
- 設(shè)計(jì)中的重點(diǎn)、難點(diǎn)及關(guān)鍵技術(shù)問(wèn)題的把握控制及相應(yīng)措施
- 五年級(jí)數(shù)學(xué)(小數(shù)四則混合運(yùn)算)計(jì)算題專項(xiàng)練習(xí)及答案
- 湖南省益陽(yáng)市2023-2024學(xué)年高二上學(xué)期1月期末物理試題 含答案
- 第17課 中國(guó)工農(nóng)紅軍長(zhǎng)征 課件-2024-2025學(xué)年統(tǒng)編版八年級(jí)歷史上冊(cè)
- 【MOOC】創(chuàng)新與創(chuàng)業(yè)管理-南京師范大學(xué) 中國(guó)大學(xué)慕課MOOC答案
- 【MOOC】成本會(huì)計(jì)學(xué)-西北農(nóng)林科技大學(xué) 中國(guó)大學(xué)慕課MOOC答案
- 人教版道德與法治六上六年級(jí)道德與法治(上冊(cè))期末 測(cè)試卷(答案版)
- 2024年中國(guó)金蓮花膠囊市場(chǎng)調(diào)查研究報(bào)告
- 有關(guān)中醫(yī)康復(fù)治療課件
- 2024-2030年中國(guó)廢棄電器電子產(chǎn)品回收處理行業(yè)發(fā)展?fàn)顩r及投資規(guī)劃分析報(bào)告版
- 期末復(fù)習(xí)試題(試題)-2024-2025學(xué)年四年級(jí)上冊(cè)數(shù)學(xué)人教版
評(píng)論
0/150
提交評(píng)論