2025屆浙江省杭州地區(qū)七校聯(lián)考高一上數(shù)學期末復習檢測模擬試題含解析_第1頁
2025屆浙江省杭州地區(qū)七校聯(lián)考高一上數(shù)學期末復習檢測模擬試題含解析_第2頁
2025屆浙江省杭州地區(qū)七校聯(lián)考高一上數(shù)學期末復習檢測模擬試題含解析_第3頁
2025屆浙江省杭州地區(qū)七校聯(lián)考高一上數(shù)學期末復習檢測模擬試題含解析_第4頁
2025屆浙江省杭州地區(qū)七校聯(lián)考高一上數(shù)學期末復習檢測模擬試題含解析_第5頁
已閱讀5頁,還剩8頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2025屆浙江省杭州地區(qū)七校聯(lián)考高一上數(shù)學期末復習檢測模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知,,,則、、的大小關系為()A. B.C. D.2.中國5G技術領先世界,5G技術的數(shù)學原理之一便是著名的香農(nóng)公式:.它表示:在受噪聲干擾的信道中,最大信息傳遞速度C取決于信道帶寬W,信道內(nèi)信號的平均功率S,信道內(nèi)部的高斯噪聲功率N的大小,其中叫做信噪比.當信噪比較大時,公式中真數(shù)中的1可以忽略不計.按照香農(nóng)公式,若不改變帶寬W,而將信噪比從1000提升至8000,則C大約增加了()()A.10% B.30%C.60% D.90%3.在中,,則等于A. B.C. D.4.已知向量,滿足,,且與夾角為,則()A. B.C. D.5.已知角的終邊經(jīng)過點P,則()A. B.C. D.6.根據(jù)有關資料,圍棋狀態(tài)空間復雜度的上限M約為3361,而可觀測宇宙中普通物質的原子總數(shù)N約為1080.則下列各數(shù)中與最接近的是(參考數(shù)據(jù):lg3≈048)A.1033 B.1053C.1073 D.10937.若函數(shù)恰有個零點,則的取值范圍是()A. B.C. D.8.已知直線,若,則的值為()A.8 B.2C. D.-29.邏輯斯蒂函數(shù)fx=11+eA.函數(shù)fx的圖象關于點0,fB.函數(shù)fx的值域為(0,1C.不等式fx>D.存在實數(shù)a,使得關于x的方程fx10.已知向量,,且,那么()A.2 B.-2C.6 D.-6二、填空題:本大題共6小題,每小題5分,共30分。11.已知函數(shù),且函數(shù)恰有兩個不同零點,則實數(shù)的取值范圍是___________.12.終邊上一點坐標為,的終邊逆時針旋轉與的終邊重合,則______.13.若偶函數(shù)在區(qū)間上單調(diào)遞增,且,,則不等式的解集是___________.14.過點,的直線的傾斜角為___________.15.已知,,則的值為_______.16.若,則_____三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知,且,求的值18.已知函數(shù)(Ⅰ)求在區(qū)間上的單調(diào)遞增區(qū)間;(Ⅱ)若,,求值19.已知函數(shù).(1)判斷的奇偶性;(2)判斷在上的單調(diào)性,并用定義證明;(3)若關于x的方程在R上有四個不同的根,求實數(shù)t的取值范圍.20.已知函數(shù)(,且).(1)寫出函數(shù)的定義域,判斷奇偶性,并證明;(2)解不等式.21.整治人居環(huán)境,打造美麗鄉(xiāng)村,某村準備將一塊由一個半圓和長方形組成的空地進行美化,如圖,長方形的邊為半圓的直徑,O為半圓的圓心,,現(xiàn)要將此空地規(guī)劃出一個等腰三角形區(qū)域(底邊)種植觀賞樹木,其余的區(qū)域種植花卉.設.(1)當時,求的長;(2)求三角形區(qū)域面積的最大值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】利用對數(shù)函數(shù)、指數(shù)函數(shù)的單調(diào)性結合中間值法可得出、、的大小關系.【詳解】因為,,,因此,.故選:C.2、B【解析】根據(jù)所給公式、及對數(shù)的運算法則代入計算可得;【詳解】解:當時,,當時,,∴,∴約增加了30%.故選:B3、C【解析】分析:利用兩角和的正切公式,求出的三角函數(shù)值,求出的大小,然后求出的值即可詳解:由,則,因為位三角形的內(nèi)角,所以,所以,故選C點睛:本題主要考查了兩角和的正切函數(shù)的應用,解答中注意公式的靈活運用以及三角形內(nèi)角定理的應用,著重考查了推理與計算能力4、D【解析】根據(jù)向量的運算性質展開可得,再代入向量的數(shù)量積公式即可得解.【詳解】根據(jù)向量運算性質,,故選:D5、B【解析】根據(jù)三角函數(shù)的定義計算,即可求得答案.【詳解】角終邊過點,,,故選:B.6、D【解析】設,兩邊取對數(shù),,所以,即最接近,故選D.【名師點睛】本題考查了轉化與化歸能力,本題以實際問題的形式給出,但本質就是對數(shù)的運算關系,以及指數(shù)與對數(shù)運算的關系,難點是令,并想到兩邊同時取對數(shù)進行求解,對數(shù)運算公式包含,,.7、D【解析】由分段函數(shù)可知必須每段有且只有1個零點,寫出零點建立不等式組即可求解.【詳解】因為時至多有一個零點,單調(diào)函數(shù)至多一個零點,而函數(shù)恰有個零點,所以需滿足有1個零點,有1個零點,所以,解得,故選:D8、D【解析】根據(jù)兩條直線垂直,列方程求解即可.【詳解】由題:直線相互垂直,所以,解得:.故選:D【點睛】此題考查根據(jù)兩條直線垂直,求參數(shù)的取值,關鍵在于熟練掌握垂直關系的表達方式,列方程求解.9、D【解析】A選項,代入f-x,計算fx+f-x=1和f0=12,可得對稱性;B選項,由【詳解】解:對于A:fx=11+e-x=ex1+ex,f-x對于B:fx=11+e-x,易知e-x>0,所以1+e對于C:由fx=11+e-x容易判斷,函數(shù)fx在R上單調(diào)遞增,且f對于D:因為函數(shù)fx在R上單調(diào)遞增,所以方程fx故選:D.10、B【解析】根據(jù)向量共線的坐標表示,列出關于m的方程,解得答案.【詳解】由向量,,且,可得:,故選:B二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】作出函數(shù)的圖象,把函數(shù)的零點轉化為直線與函數(shù)圖象交點問題解決.【詳解】由得,即函數(shù)零點是直線與函數(shù)圖象交點橫坐標,當時,是增函數(shù),函數(shù)值從1遞增到2(1不能取),當時,是增函數(shù),函數(shù)值為一切實數(shù),在坐標平面內(nèi)作出函數(shù)的圖象,如圖,觀察圖象知,當時,直線與函數(shù)圖象有2個交點,即函數(shù)有2個零點,所以實數(shù)的取值范圍是:.故答案為:12、【解析】由題知,進而根據(jù)計算即可.【詳解】解:因為終邊上一點坐標為,所以,因為的終邊逆時針旋轉與的終邊重合,所以故答案為:13、【解析】根據(jù)題意,結合函數(shù)的性質,分析可得在區(qū)間上的性質,即可得答案.【詳解】因為偶函數(shù)在區(qū)間上單調(diào)遞增,且,,所以在區(qū)間上單調(diào)上單調(diào)遞減,且,所以的解集為.故答案為:14、##【解析】設直線的傾斜角為,求出直線的斜率即得解.【詳解】解:設直線的傾斜角為,由題得直線的斜率為,因為,所以.故答案為:15、-.【解析】將和分別平方計算可得.【詳解】∵,∴,∴,∴,又∵,∴,∴,故答案為:-.【點晴】此題考同腳三角函數(shù)基本關系式應用,屬于簡單題.16、【解析】首先求函數(shù),再求的值.【詳解】設,則所以,即,,.故答案為:三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、【解析】利用同角三角函數(shù)的基本關系可求得的值,再結合誘導公式可求得所求代數(shù)式的值.【詳解】∵,∴,∵,∴所以,∴【點睛】關鍵點睛:解決三角函數(shù)中的給值求值的問題時,關鍵在于找出待求的角與已知的角之間的關系.18、(Ⅰ),;(Ⅱ).【解析】(Ⅰ)利用三角恒等變換思想化簡函數(shù)的解析式為,求得函數(shù)在上的單調(diào)遞增區(qū)間,與取交集可得出結果;(Ⅱ)由可得出,利用同角三角函數(shù)的基本關系可求得的值,利用兩角和的正弦公式可求得的值【詳解】(Ⅰ)令,,得,令,得;令,得.因此,函數(shù)在區(qū)間上的單調(diào)遞增區(qū)間為,;(Ⅱ)由,得,,又,,因此,【點睛】本題考查正弦型函數(shù)的單調(diào)區(qū)間的求解,同時也考查了利用兩角和的正弦公式求值,考查計算能力,屬于中等題.19、(1)是偶函數(shù)(2)在上單調(diào)遞增,證明見解析(3)【解析】(1)利用函數(shù)奇偶性的定義,判斷的關系即可得出結論;(2)任取,利用作差法整理即可得出結論;(3)由整理得,易得的最小值為,令,設,則原方程有4個不同的根等價于在上有2個不同的零點,從而可得出答案.【小問1詳解】解:的定義域為R,∵,∴,∴是偶函數(shù);【小問2詳解】解:在上單調(diào)遞增,證明如下:任取,則,∵,∴,另一方面,∴,∴,即,∴在上單調(diào)遞增;【小問3詳解】由整理得,由(1)(2)可知在上單調(diào)遞減,在上單調(diào)遞增,最小值為,令,則當時,每個a的值對應兩個不同的x值,設,原方程有4個不同的根等價于在上有2個不同的零點,∴解得,即t的取值范圍是.20、(1),為奇函數(shù);(2)當時,解得:當時,【解析】【試題分析】(1)根據(jù)求得函數(shù)的定義域,利用判斷出函數(shù)為奇函數(shù).(2)將原不等式轉化為,對分成兩類,利用函數(shù)的單調(diào)性求得不等式的解集.試題解析】(1)由題設可得,解得,故函數(shù)定義域為從而:故為奇函數(shù).(2)由題設可得,即:當時∴為上的減函數(shù)∴,解得:當時∴為上的增函數(shù)∴,解得:【點睛】本小題主要考查函數(shù)的定義域的求法,考查函數(shù)單調(diào)性的證明,考查利用函數(shù)的單調(diào)性解不等式,還考查了分類討論的數(shù)學思想方法.函數(shù)的定義域是使得函數(shù)表達式有意義的的取值范圍,一般是分母不為零,偶次方根被開方數(shù)不為零,對數(shù)的真數(shù)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論