版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
山東省濰坊市昌樂博聞學(xué)校2025屆高二數(shù)學(xué)第一學(xué)期期末聯(lián)考模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知直線與直線垂直,則實(shí)數(shù)()A.10 B.C.5 D.2.已知函數(shù)有兩個(gè)不同的零點(diǎn),則實(shí)數(shù)的取值范圍是()A B.C. D.3.在平面直角坐標(biāo)系xOy中,點(diǎn)(0,4)關(guān)于直線x-y+1=0的對(duì)稱點(diǎn)為()A.(-1,2) B.(2,-1)C.(1,3) D.(3,1)4.已知,是橢圓的左,右焦點(diǎn),是的左頂點(diǎn),點(diǎn)在過且斜率為的直線上,為等腰三角形,,則的離心率為A. B.C. D.5.設(shè)函數(shù),則和的值分別為()A.、 B.、C.、 D.、6.?dāng)?shù)學(xué)美的表現(xiàn)形式不同于自然美或藝術(shù)美那樣直觀,它蘊(yùn)藏于特有的抽象概念,公式符號(hào),推理論證,思維方法等之中,揭示了規(guī)律性,是一種科學(xué)的真實(shí)美.平面直角坐標(biāo)系中,曲線:就是一條形狀優(yōu)美的曲線,對(duì)于此曲線,給出如下結(jié)論:①曲線圍成的圖形的面積是;②曲線上的任意兩點(diǎn)間的距離不超過;③若是曲線上任意一點(diǎn),則的最小值是其中正確結(jié)論的個(gè)數(shù)為()A. B.C. D.7.執(zhí)行如圖所示的程序框圖,若輸出的的值為,則判斷框中應(yīng)填入()A.? B.?C.? D.?8.已知是邊長(zhǎng)為6的等邊所在平面外一點(diǎn),,當(dāng)三棱錐的體積最大時(shí),三棱錐外接球的表面積為()A. B.C. D.9.已知直線在x軸和y軸上的截距相等,則a的值是()A或1 B.或C. D.110.已知集合,,則()A. B.C. D.11.如圖是函數(shù)的導(dǎo)函數(shù)的圖象,下列說法正確的是()A.函數(shù)在上是增函數(shù)B.函數(shù)在上是減函數(shù)C.是函數(shù)的極小值點(diǎn)D.是函數(shù)的極大值點(diǎn)12.與直線平行,且經(jīng)過點(diǎn)(2,3)的直線的方程為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.隨機(jī)投擲一枚均勻的硬幣兩次,則兩次都正面朝上的概率為______14.在空間直角坐標(biāo)系中,點(diǎn)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為點(diǎn),則___________.15.執(zhí)行如圖所示的程序框圖,則輸出的結(jié)果________16.如圖所示的莖葉圖記錄了甲、乙兩組各5名工人某日的產(chǎn)量數(shù)據(jù)(單位:件).若這兩組數(shù)據(jù)的中位數(shù)相等,且平均值也相等,則x=_____________,y=_____________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知點(diǎn),圓C:,l:.(1)若直線過點(diǎn)M,且被圓C截得的弦長(zhǎng)為,求該直線的方程;(2)設(shè)P為已知直線l上的動(dòng)點(diǎn),過點(diǎn)P向圓C作一條切線,切點(diǎn)為Q,求的最小值.18.(12分)已知橢圓的焦距為,左、右焦點(diǎn)分別為,為橢圓上一點(diǎn),且軸,,為垂足,為坐標(biāo)原點(diǎn),且(1)求橢圓的標(biāo)準(zhǔn)方程;(2)過橢圓的右焦點(diǎn)的直線(斜率不為)與橢圓交于兩點(diǎn),為軸正半軸上一點(diǎn),且,求點(diǎn)的坐標(biāo)19.(12分)已知函數(shù)f(x)=x-mlnx-m.(1)討論函數(shù)f(x)的單調(diào)性;(2)若函數(shù)f(x)有最小值g(m),證明:g(m)在上恒成立.20.(12分)已知橢圓C經(jīng)過,兩點(diǎn)(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)直線l與C交于P,Q兩點(diǎn),M是PQ的中點(diǎn),O是坐標(biāo)原點(diǎn),,求證:的邊PQ上的高為定值21.(12分)在中,,,的對(duì)邊分別是,,,已知.(1)求;(2)若,且的面積為4,求的周長(zhǎng)22.(10分)已知橢圓:的離心率為,,分別為橢圓的左,右焦點(diǎn),為橢圓上一點(diǎn),的周長(zhǎng)為.(1)求橢圓的方程;(2)為圓上任意一點(diǎn),過作橢圓的兩條切線,切點(diǎn)分別為A,B,判斷是否為定值?若是,求出定值:若不是,說明理由,
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】根據(jù)兩直線垂直,列出方程,即可求解.【詳解】由題意,直線與直線垂直,可得,解得.故選:B.2、A【解析】分離參數(shù),求函數(shù)的導(dǎo)數(shù),根據(jù)函數(shù)有兩個(gè)零點(diǎn)可知函數(shù)的單調(diào)性,即可求解.【詳解】由題意得有兩個(gè)零點(diǎn)令,則且所以,在上為增函數(shù),可得,當(dāng),在上單調(diào)遞減,可得,即要有兩個(gè)零點(diǎn)有兩個(gè)零點(diǎn),實(shí)數(shù)的取值范圍是.故選:A【點(diǎn)睛】方法點(diǎn)睛:已知函數(shù)有零點(diǎn)求參數(shù)取值范圍常用的方法和思路(1)直接法:直接根據(jù)題設(shè)條件構(gòu)建關(guān)于參數(shù)的不等式,再通過解不等式確定參數(shù)范圍;(2)分離參數(shù)法:先將參數(shù)分離,轉(zhuǎn)化成求函數(shù)值域問題加以解決;(3)數(shù)形結(jié)合法:先對(duì)解析式變形,在同一平面直角坐標(biāo)系中,畫出函數(shù)的圖象,然后數(shù)形結(jié)合求解3、D【解析】設(shè)出點(diǎn)(0,4)關(guān)于直線的對(duì)稱點(diǎn)的坐標(biāo),根據(jù)題意列出方程組,解方程組即可【詳解】解:設(shè)點(diǎn)(0,4)關(guān)于直線x-y+1=0的對(duì)稱點(diǎn)是(a,b),則,解得:,故選:D4、D【解析】分析:先根據(jù)條件得PF2=2c,再利用正弦定理得a,c關(guān)系,即得離心率.詳解:因?yàn)榈妊切?,,所以PF2=F1F2=2c,由斜率為得,,由正弦定理得,所以,故選D.點(diǎn)睛:解決橢圓和雙曲線的離心率的求值及范圍問題其關(guān)鍵就是確立一個(gè)關(guān)于的方程或不等式,再根據(jù)的關(guān)系消掉得到的關(guān)系式,而建立關(guān)于的方程或不等式,要充分利用橢圓和雙曲線的幾何性質(zhì)、點(diǎn)的坐標(biāo)的范圍等.5、D【解析】求得,即可求得、的值.【詳解】,則,則,故,.故選:D.6、C【解析】結(jié)合已知條件寫出曲線的解析式,進(jìn)而作出圖像,對(duì)于①,通過圖像可知,所求面積為四個(gè)半圓和一個(gè)正方形面積之和,結(jié)合數(shù)據(jù)求解即可;對(duì)于②,根據(jù)圖像求出曲線上的任意兩點(diǎn)間的距離的最大值即可判斷;對(duì)于③,將問題轉(zhuǎn)化為點(diǎn)到直線的距離,然后利用圓上一點(diǎn)到直線的距離的最小值為圓心到直線的距離減去半徑即可求解.【詳解】當(dāng)且時(shí),曲線的方程可化為:;當(dāng)且時(shí),曲線的方程可化為:;當(dāng)且時(shí),曲線的方程可化為:;當(dāng)且時(shí),曲線的方程可化為:,曲線的圖像如下圖所示:由上圖可知,曲線所圍成的面積為四個(gè)半圓的面積與邊長(zhǎng)為的正方形的面積之和,從而曲線所圍成的面積,故①正確;由曲線的圖像可知,曲線上的任意兩點(diǎn)間的距離的最大值為兩個(gè)半徑與正方形的邊長(zhǎng)之和,即,故②錯(cuò)誤;因?yàn)榈街本€的距離為,所以,當(dāng)最小時(shí),易知在曲線的第一象限內(nèi)的圖像上,因?yàn)榍€的第一象限內(nèi)的圖像是圓心為,半徑為的半圓,所以圓心到的距離,從而,即,故③正確,故選:C.7、C【解析】本題為計(jì)算前項(xiàng)和,模擬程序,實(shí)際計(jì)算求和即可得到的值.【詳解】由題意可知:輸出的的值為數(shù)列的前項(xiàng)和.易知,則,令,解得.即前7項(xiàng)的和.為故判斷框中應(yīng)填入“?”.故選:C.8、C【解析】由題意分析可得,當(dāng)時(shí)三棱錐的體積最大,然后作圖,將三棱錐還原成正三棱柱,按照正三棱柱外接球半徑的計(jì)算方法來計(jì)算,即可計(jì)算出球半徑,從而完成求解.【詳解】由題意可知,當(dāng)三棱錐的體積最大時(shí)是時(shí),為正三角形,如圖所示,將三棱錐補(bǔ)成正三棱柱,該正三棱柱的外接球就是三棱錐的外接球,而正三棱柱的外接球球心落在上下底面外接圓圓心連線的中點(diǎn)上,設(shè)外接圓半徑為,三棱錐外接球半徑為,由正弦定理可得:,所以,,所以三棱錐外接球的表面積為.故選:C.9、A【解析】分截距都為零和都不為零討論即可.【詳解】當(dāng)截距都為零時(shí),直線過原點(diǎn),;當(dāng)截距不為零時(shí),,.綜上:或.故選:A.10、A【解析】由已知得,因?yàn)?,所以,故選A11、A【解析】根據(jù)圖象,結(jié)合導(dǎo)函數(shù)的正負(fù)性、極值的定義逐一判斷即可.【詳解】由圖象可知,當(dāng)時(shí),;當(dāng)時(shí),,在上單調(diào)遞增,在上單調(diào)遞減,可知B錯(cuò)誤,A正確;是極大值點(diǎn),沒有極小值,和不是函數(shù)的極值點(diǎn),可知C,D錯(cuò)誤故選:A12、C【解析】由直線平行及直線所過的點(diǎn),應(yīng)用點(diǎn)斜式寫出直線方程即可.【詳解】與直線平行,且經(jīng)過點(diǎn)(2,3)的直線的方程為,整理得故選:C二、填空題:本題共4小題,每小題5分,共20分。13、##【解析】列舉出所有情況,利用古典概型的概率公式求解即可【詳解】隨機(jī)投擲一枚均勻的硬幣兩次,共有:正正,正反,反正,反反共4種情況,兩次都是正面朝上的有:正正1種情況,所以兩次都正面朝上的概率為,故答案為:14、【解析】先利用關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo)特征求出點(diǎn),再利用空間兩點(diǎn)間的距離公式即可求.【詳解】因?yàn)锽與關(guān)于原點(diǎn)對(duì)稱,故,所以.故答案為:.15、132【解析】根據(jù)程序框圖模擬程序運(yùn)行,確定變量值的變化可得結(jié)論【詳解】程序運(yùn)行時(shí),變量值變化如下:,判斷循環(huán)條件,滿足,,;判斷循環(huán)條件,滿足,,;判斷循環(huán)條件,不滿足,輸出故答案為:13216、①.3②.5【解析】根據(jù)莖葉圖進(jìn)行數(shù)據(jù)分析,列方程求出x、y.【詳解】由題意,甲組數(shù)據(jù)為56,62,65,70+x,74;乙組數(shù)據(jù)為59,61,67,60+y,78.要使兩組數(shù)據(jù)中位數(shù)相等,有65=60+y,所以y=5.又平均數(shù)相同,則,解得x=3.故答案為:3;5.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)或(2)【解析】(1)求出圓的圓心到直線的距離,再利用垂徑定理計(jì)算列方程計(jì)算;(2)由題意可知當(dāng)最小時(shí),連線與已知直線垂直,求出,再利用計(jì)算即可.【小問1詳解】由題意可知圓的圓心到直線的距離為①當(dāng)直線斜率不存在時(shí),圓的圓心到直線距離為1,滿足題意;②當(dāng)直線斜率存在時(shí),設(shè)過的直線方程為:,即由點(diǎn)到直線距離公式列方程得:解得綜上,過的直線方程為或.【小問2詳解】由題意可知當(dāng)最小時(shí),連線與已知直線垂直,由勾股定理知:,所以的最小值為.18、(1)(2)【解析】(1)利用△∽△構(gòu)造齊次方程,求出離心率,再利用焦距即可求出橢圓方程;(2)將直線方程與橢圓方程聯(lián)立利用韋達(dá)定理求出和,利用幾何關(guān)系可知,即可得,將韋達(dá)定理代入化簡(jiǎn)即可求得點(diǎn)坐標(biāo).【小問1詳解】∵橢圓的焦距為,∴,即,軸,∴,則,由,,則△∽△,∴,即,整理得,即,解得或(舍去)∴,∴,則橢圓的標(biāo)準(zhǔn)方程為,【小問2詳解】設(shè)直線的方程為,且,將直線方程與橢圓方程聯(lián)立得,,則,,∵,∴,∴,∴,∴,即.19、(1)答案見解析(2)證明見解析【解析】(1)求出函數(shù)的導(dǎo)數(shù),討論其符號(hào)后可得函數(shù)的單調(diào)區(qū)間.(2)根據(jù)(1)的結(jié)論可得函數(shù)的最小值,再利用導(dǎo)數(shù)可證不等式.【小問1詳解】函數(shù)的定義域?yàn)?,且,?dāng)時(shí),在上恒成立,所以此時(shí)在上為增函數(shù),當(dāng)時(shí),由,解得,由,解得,所以在上為減函數(shù),在上為增函數(shù),綜上:當(dāng)時(shí),在上為增函數(shù),當(dāng)時(shí),在上為減函數(shù),在上為增函數(shù);【小問2詳解】由(1)知:當(dāng)時(shí),在上為增函數(shù),無最小值.當(dāng)時(shí),在上上為減函數(shù),在上為增函數(shù),所以,即,則,由,解得,由,解得,所以在上為增函數(shù),在上為減函數(shù),所以,即在上恒成立.20、(1)(2)證明見解析【解析】(1)設(shè)出橢圓方程,根據(jù)的坐標(biāo)求得橢圓方程.(2)對(duì)直線的斜率分成存在和不存在兩種情況進(jìn)行分類討論,求得的邊PQ上的高來證得結(jié)論成立.【小問1詳解】設(shè)橢圓方程為,將坐標(biāo)代入得,所以橢圓方程為.小問2詳解】當(dāng)直線的斜率不存在時(shí),關(guān)于軸對(duì)稱,由于,所以,即,直線與橢圓有兩個(gè)交點(diǎn),符合題意.所以的邊PQ上的高為.當(dāng)直線的斜率不存在時(shí),設(shè)直線的方程為,由消去并化簡(jiǎn)得①,設(shè),則,.由于M是PQ的中點(diǎn)且,所以,所以,即,,,.此時(shí)①的.原點(diǎn)到直線的距離為.綜上所述,的邊PQ上的高為定值21、(1)(2)【解析】(1)根據(jù)正弦定理及題中條件,可得,化簡(jiǎn)整理,即可求解(2)由的面積為4,結(jié)合(1)中結(jié)論,可得,結(jié)合余弦定理,可得,從而可求的周長(zhǎng)【詳解】解:(1)由及正弦定理得,,又,∴,∴,∴.(2)∵的面積為,∴.由余弦定理得,∴.故的周長(zhǎng)為.【點(diǎn)睛】本題
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年人教版八年級(jí)數(shù)學(xué)寒假預(yù)習(xí) 第06講 勾股定理的逆定理(1個(gè)知識(shí)點(diǎn)+4大考點(diǎn)舉一反三+過關(guān)測(cè)試)
- 【紅對(duì)勾】2020-2021學(xué)年人教版高中物理選修3-1作業(yè):3-6-帶電粒子在勻強(qiáng)磁場(chǎng)中的運(yùn)動(dòng)
- 浙江省麗水蓮都區(qū)2023-2024學(xué)年第二學(xué)期期末檢測(cè)卷 六年級(jí)下冊(cè)科學(xué)
- 【名師一號(hào)】2020-2021學(xué)年高中英語選修六-雙基限時(shí)練13
- 【名師一號(hào)】2020-2021學(xué)年高中英語(外研版)必修二-雙基限時(shí)練14
- 2021高考英語一輪課下限時(shí)訓(xùn)練及答案(人教新課標(biāo)必修2Unit-2)
- 《產(chǎn)堿桿菌肺炎》課件
- 一年級(jí)數(shù)學(xué)(上)計(jì)算題專項(xiàng)練習(xí)集錦
- 四年級(jí)數(shù)學(xué)(四則混合運(yùn)算帶括號(hào))計(jì)算題專項(xiàng)練習(xí)與答案匯編
- 中國(guó)傳統(tǒng)服飾文化
- 山東省濟(jì)南市2023-2024學(xué)年高三上學(xué)期期末學(xué)習(xí)質(zhì)量檢測(cè)生物試題(原卷版)
- 《食品包裝與安全》課件
- 幼兒園中班區(qū)域材料投放記錄表
- 內(nèi)蒙古自治區(qū)呼和浩特市部分學(xué)校2023-2024學(xué)年九年級(jí)上學(xué)期期末數(shù)學(xué)試卷
- 兒科重癥肺炎的康復(fù)治療方案
- 成人糖尿病食養(yǎng)指南2023年版
- 2023年電氣其自動(dòng)化高級(jí)工程師年度總結(jié)及下年規(guī)劃
- 機(jī)械加工刀具中英文對(duì)照外文翻譯文獻(xiàn)
- 詩(shī)詞若干首唐宋明朝詩(shī)人詠四川
- 泰達(dá)時(shí)代中心樓頂發(fā)光字施工方案
- 七年級(jí)上冊(cè)數(shù)學(xué)期末考試(難的)
評(píng)論
0/150
提交評(píng)論