上海市高境第一中學(xué)2025屆高二上數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第1頁
上海市高境第一中學(xué)2025屆高二上數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第2頁
上海市高境第一中學(xué)2025屆高二上數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第3頁
上海市高境第一中學(xué)2025屆高二上數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第4頁
上海市高境第一中學(xué)2025屆高二上數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

上海市高境第一中學(xué)2025屆高二上數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視模擬試題注意事項(xiàng)1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知是雙曲線的左焦點(diǎn),,是雙曲線右支上的動(dòng)點(diǎn),則的最小值為()A.9 B.8C.7 D.62.在等差數(shù)列{}中,,,則的值為()A.18 B.20C.22 D.243.已知△ABC的頂點(diǎn)B、C在橢圓+y2=1上,頂點(diǎn)A是橢圓的一個(gè)焦點(diǎn),且橢圓的另外一個(gè)焦點(diǎn)在BC邊上,則△ABC的周長是()A.2 B.6C.4 D.124.雙曲線的漸近線方程為A. B.C. D.5.“”是“方程表示焦點(diǎn)在x軸上的橢圓”的()A.充要條件 B.必要而不充分條件C.充分而不必要條件 D.既不充分也不必要條件6.命題“?x∈R,|x|+x2≥0”的否定是()A.?x∈R,|x|+x2<0 B.?x∈R,|x|+x2≤0C.?x0∈R,|x0|+<0 D.?x0∈R,|x0|+≥07.在平面直角坐標(biāo)系xOy中,雙曲線(,)的左、右焦點(diǎn)分別為,,點(diǎn)M是雙曲線右支上一點(diǎn),,且,則雙曲線的離心率為()A. B.C. D.8.阿波羅尼斯是古希臘著名數(shù)學(xué)家,與歐幾里得、阿基米德并稱為亞歷山大時(shí)期數(shù)學(xué)三巨匠,他對圓錐曲線有深刻而系統(tǒng)的研究,主要研究成果集中在他的代表作《圓錐曲線》一書,阿波羅尼斯圓就是他的研究成果之一.指的是:已知?jiǎng)狱c(diǎn)與兩定點(diǎn)的距離之比,那么點(diǎn)的軌跡就是阿波羅尼斯圓.已知?jiǎng)狱c(diǎn)的軌跡是阿波羅尼斯圓,其方程為,其中,定點(diǎn)為軸上一點(diǎn),定點(diǎn)的坐標(biāo)為,若點(diǎn),則的最小值為()A. B.C. D.9.已知等比數(shù)列的公比為,則“是遞增數(shù)列”的一個(gè)充分條件是()A. B.C. D.10.曲線:在點(diǎn)處的切線方程為A. B.C. D.11.設(shè)為實(shí)數(shù),則曲線:不可能是()A.拋物線 B.雙曲線C.圓 D.橢圓12.(2016新課標(biāo)全國Ⅱ理科)已知F1,F(xiàn)2是雙曲線E:的左,右焦點(diǎn),點(diǎn)M在E上,MF1與軸垂直,sin,則E的離心率為A. B.C. D.2二、填空題:本題共4小題,每小題5分,共20分。13.某學(xué)生到某工廠進(jìn)行勞動(dòng)實(shí)踐,利用打印技術(shù)制作模型.如圖,該模型為一個(gè)大圓柱中挖去一個(gè)小圓柱后的剩余部分(兩個(gè)圓柱底面圓的圓心重合),大圓柱的軸截面是邊長為的正方形,小圓柱的側(cè)面積是大圓柱側(cè)面積的一半,打印所用原料的密度為,不考慮打印損耗,制作該模型所需原料的質(zhì)量為________g.(?。?4.已知點(diǎn)F是拋物線的焦點(diǎn),點(diǎn),點(diǎn)P為拋物線上的任意一點(diǎn),則的最小值為_________.15.設(shè)P為圓上一動(dòng)點(diǎn),Q為直線上一動(dòng)點(diǎn),O為坐標(biāo)原點(diǎn),則的最小值為___16.二項(xiàng)式的展開式中,項(xiàng)的系數(shù)為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)等比數(shù)列中,,(1)求的通項(xiàng)公式;(2)記為的前n項(xiàng)和.若,求m的值18.(12分)已知函數(shù)(a是常數(shù)).(1)當(dāng)時(shí),求的單調(diào)區(qū)間與極值;(2)若,求a的取值范圍.19.(12分)已知點(diǎn)是橢圓E:一點(diǎn),且橢圓的離心率為.(1)求此橢圓E方程;(2)設(shè)橢圓的左頂點(diǎn)為A,過點(diǎn)A向上作一射線交橢圓E于點(diǎn)B,以AB為邊作矩形ABCD,使得對邊CD經(jīng)過橢圓中心O.(i)求矩形ABCD面積的最大值;(ii)問:矩形ABCD能否為正方形?若能,求出直線AB的方程;若不能,請說明理由.20.(12分)已知拋物線C:x2=2py的焦點(diǎn)為F,點(diǎn)N(t,1)在拋物線C上,且|NF|=.(1)求拋物線C的方程;(2)過點(diǎn)M(0,1)的直線l交拋物線C于不同的兩點(diǎn)A,B,設(shè)O為坐標(biāo)原點(diǎn),直線OA,OB的斜率分別為k1,k2,求證:k1k2為定值.21.(12分)已知函數(shù).(1)求函數(shù)在處的切線方程;(2)設(shè)為的導(dǎo)數(shù),若方程的兩根為,且,當(dāng)時(shí),不等式對任意的恒成立,求正實(shí)數(shù)的最小值.22.(10分)已知橢圓過點(diǎn),且離心率(1)求橢圓的方程;(2)設(shè)點(diǎn)為橢圓的左焦點(diǎn),點(diǎn),過點(diǎn)作的垂線交橢圓于點(diǎn),,連接與交于點(diǎn)①若,求;②求的值

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】由雙曲線方程求出,再根據(jù)點(diǎn)在雙曲線的兩支之間,結(jié)合可求得答案【詳解】由,得,則,所以左焦點(diǎn)為,右焦點(diǎn),則由雙曲線的定義得,因?yàn)辄c(diǎn)在雙曲線的兩支之間,所以,所以,當(dāng)且僅當(dāng)三點(diǎn)共線時(shí)取等號,所以的最小值為9,故選:A2、B【解析】根據(jù)等差數(shù)列通項(xiàng)公式相關(guān)計(jì)算求出公差,進(jìn)而求出首項(xiàng).【詳解】設(shè)公差為,由題意得:,解得:,所以.故選:B3、C【解析】根據(jù)題設(shè)條件求出橢圓的長半軸,再借助橢圓定義即可作答.【詳解】由橢圓+y2=1知,該橢圓的長半軸,A是橢圓一個(gè)焦點(diǎn),設(shè)另一焦點(diǎn)為,而點(diǎn)在BC邊上,點(diǎn)B,C又在橢圓上,由橢圓定義得,所以的周長故選:C4、A【解析】根據(jù)雙曲線的漸近線方程知,,故選A.5、A【解析】由橢圓的標(biāo)準(zhǔn)方程結(jié)合充分必要條件的定義即得.【詳解】若,則方程表示焦點(diǎn)在軸上的橢圓;反之,若方程表示焦點(diǎn)在軸上的橢圓,則;所以“”是“方程表示焦點(diǎn)在x軸上的橢圓”的充要條件.故選:A.6、C【解析】利用全稱命題的否定可得出結(jié)論.【詳解】由全稱命題的否定可知,命題“,”的否定是“,”.故選:C.7、A【解析】本題考查雙曲線的定義、幾何性質(zhì)及直角三角形的判定即可解決.【詳解】因?yàn)?,,所以在中,邊上的中線等于的一半,所以.因?yàn)椋钥稍O(shè),,則,解得,所以,由雙曲線的定義得,所以雙曲線的離心率故選:A8、D【解析】設(shè),,根據(jù)和求出a的值,由,兩點(diǎn)之間直線最短,可得的最小值為,根據(jù)坐標(biāo)求出即可.【詳解】設(shè),,所以,由,所以,因?yàn)榍遥?,整理可得,又?dòng)點(diǎn)M的軌跡是,所以,解得,所以,又,所以,因?yàn)?,所以的最小值,?dāng)M在位置或時(shí)等號成立.故選:D9、D【解析】由等比數(shù)列滿足遞增數(shù)列,可進(jìn)行和兩項(xiàng)關(guān)系的比較,從而確定和的大小關(guān)系.【詳解】由等比數(shù)列是遞增數(shù)列,若,則,得;若,則,得;所以等比數(shù)列是遞增數(shù)列,或,;故等比數(shù)列是遞增數(shù)列是遞增數(shù)列的一個(gè)充分條件為,.故選:D.10、A【解析】因?yàn)?,所以曲線在點(diǎn)(1,0)處的切線的斜率為,所以切線方程為,即,選A11、A【解析】根據(jù)圓的方程、橢圓的方程、雙曲線的方程和拋物線的方程特征即可判斷.【詳解】解:對A:因?yàn)榍€C的方程中都是二次項(xiàng),所以根據(jù)拋物線標(biāo)準(zhǔn)方程的特征曲線C不可能是拋物線,故選項(xiàng)A正確;對B:當(dāng)時(shí),曲線C為雙曲線,故選項(xiàng)B錯(cuò)誤;對C:當(dāng)時(shí),曲線C為圓,故選項(xiàng)C錯(cuò)誤;對D:當(dāng)且時(shí),曲線C為橢圓,故選項(xiàng)D錯(cuò)誤;故選:A.12、A【解析】由已知可得,故選A.考點(diǎn):1、雙曲線及其方程;2、雙曲線的離心率.【方法點(diǎn)晴】本題考查雙曲線及其方程、雙曲線的離心率.,涉及方程思想、數(shù)形結(jié)合思想和轉(zhuǎn)化化歸思想,考查邏輯思維能力、等價(jià)轉(zhuǎn)化能力、運(yùn)算求解能力,綜合性較強(qiáng),屬于較難題型.由已知可得,利用雙曲線的定義和雙曲線的通徑公式,可以降低計(jì)算量,提高解題速度.二、填空題:本題共4小題,每小題5分,共20分。13、4500【解析】根據(jù)題意可知大圓柱的底面圓的半徑,兩圓柱的高,設(shè)小圓柱的底面圓的半徑為,再根據(jù)小圓柱的側(cè)面積是大圓柱側(cè)面積的一半,求出小圓柱的底面圓的半徑,然后求出該模型的體積,從而可得出答案.【詳解】解:根據(jù)題意可知大圓柱的底面圓的半徑,兩圓柱的高,設(shè)小圓柱的底面圓的半徑為,則有,即,解得,所以該模型的體積為,所以制作該模型所需原料的質(zhì)量為.故答案:4500.14、3【解析】根據(jù)拋物線的定義可求最小值.【詳解】如圖,過作拋物線準(zhǔn)線的垂線,垂足為,連接,則,當(dāng)且僅當(dāng)共線時(shí)等號成立,故的最小值為3,故答案為:3.15、4【解析】取點(diǎn),可得,從而,,從而可求解【詳解】解:由圓,得圓心,半徑,取點(diǎn)A(3,0),則,又,∴,∴,∴,當(dāng)且僅當(dāng)直線時(shí)取等號故答案為:16、80【解析】利用二項(xiàng)式的通項(xiàng)公式進(jìn)行求解即可.【詳解】二項(xiàng)式的通項(xiàng)公式為:,令,所以項(xiàng)的系數(shù)為,故答案為:80三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)或;(2)5.【解析】(1)設(shè)的公比為q,解方程即得解;(2)分兩種情況解方程即得解.【小問1詳解】解:設(shè)的公比為q,由題設(shè)得由已知得,解得(舍去),或故或【小問2詳解】解:若,則由,得,解得若,則由,得,因?yàn)?,所以此方程沒有正整數(shù)解綜上,18、(1)函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,極小值是,無極大值.(2)【解析】(1)由當(dāng),得到,求導(dǎo),再由,求解;(2)將,轉(zhuǎn)化為成立,令,求其最大值即可.【小問1詳解】解:當(dāng)時(shí),,定義域?yàn)椋?,?dāng)時(shí),,當(dāng)時(shí),,所以函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,所以時(shí),取得極小值是,無極大值.【小問2詳解】因?yàn)?,即成?設(shè),則,當(dāng)時(shí),,當(dāng)時(shí),,所以在上單調(diào)遞增,在上單調(diào)遞減,所以,所以,即.19、(1);(2)(i);(ii).【解析】(1)根據(jù)給定條件列出關(guān)于a,b的方程組,解方程組代入得解.(2)(i)設(shè)直線AB方程,與橢圓方程聯(lián)立求出線段AB長,再求出原點(diǎn)O到直線AB距離列出矩形面積求解即可;(ii)由(i)及列出方程,由方程解的情況即可判斷計(jì)算作答.【小問1詳解】令橢圓半焦距為c,依題意,,解得,所以橢圓E的方程為:.【小問2詳解】(i)由(1)知,,設(shè)直線AB的斜率為,則直線AB的方程為:,由消去y并整理得:,點(diǎn)的橫坐標(biāo),則點(diǎn)的橫坐標(biāo)有:,解得,則有,因矩形的邊CD過原點(diǎn)O,則,因此,矩形的面積,當(dāng)且僅當(dāng),即時(shí)取“=”,所以矩形ABCD面積的最大值是.(ii)假定矩形ABCD能成為正方形,則,由(i)知:,整理得:,即,而,解得,所以矩形ABCD能成為正方形,此時(shí),直線AB的方程為.【點(diǎn)睛】思路點(diǎn)睛:圓錐曲線中的最值問題,往往需要利用韋達(dá)定理構(gòu)建目標(biāo)的函數(shù)關(guān)系式,自變量可以斜率或點(diǎn)的橫、縱坐標(biāo)等.而目標(biāo)函數(shù)的最值可以通過二次函數(shù)或基本不等式或?qū)?shù)等求得.20、(1)x2=2y;(2)證明見解析【解析】(1)利用拋物線的定義進(jìn)行求解即可;(2)設(shè)直線l的直線方程與拋物線方程聯(lián)立,根據(jù)一元二次方程根與系數(shù)關(guān)系、斜率公式進(jìn)行證明即可.【小問1詳解】∵點(diǎn)N(t,1)在拋物線C:x2=2py上,且|NF|=,∴|NF|=,解得p=1,∴拋物線C的方程為x2=2y;【小問2詳解】依題意,設(shè)直線l:y=kx+1,A(x1,y1),B(x2,y2),聯(lián)立,得x2﹣2kx﹣2=0.則x1x2=﹣2,∴.故k1k2為定值.【點(diǎn)睛】關(guān)鍵點(diǎn)睛:利用拋物線的定義是解題的關(guān)鍵.21、(1)(2)1【解析】(1)先求導(dǎo)數(shù),根據(jù)導(dǎo)數(shù)的幾何意義可求得切線方程;(2)將已知方程結(jié)合其兩根,進(jìn)行變式,求得,利用該式再將不等式變形,然后將不等式的恒成立問題變?yōu)楹瘮?shù)的最值問題求解.【小問1詳解】由題意可得,所以切點(diǎn)為,則切線方程為:.【小問2詳解】由題意有:,則,因?yàn)榉謩e是方程的兩個(gè)根,即.兩式相減,則,則不等式,可變?yōu)椋瑑蛇呁瑫r(shí)除以得,,令,則在上恒成立.整理可得,在上恒成立,令,則,①當(dāng),即時(shí),在上恒成立,則在上單調(diào)遞增,又,則在上恒成立;②當(dāng),即時(shí),當(dāng)時(shí),,則在上單調(diào)遞減,則,不符合題意.綜上:,所以的最小值為1.22、(1)(2)①,②【解析】(1)由題意

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論