版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
河北省永年縣第一中學(xué)2025屆高二上數(shù)學(xué)期末監(jiān)測(cè)模擬試題考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫(xiě)在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫(xiě)在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫(xiě)在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知過(guò)點(diǎn)的直線與圓相切,且與直線垂直,則()A. B.C. D.2.設(shè),,且,則等于()A. B.C. D.3.已知函數(shù),若,,則實(shí)數(shù)的取值范圍是A. B.C. D.4.已知雙曲線:與橢圓:有相同的焦點(diǎn),且一條漸近線方程為:,則雙曲線的方程為()A. B.C. D.5.若,(),則,的大小關(guān)系是A. B.C. D.,的大小由的取值確定6.七巧板是中國(guó)古代勞動(dòng)人民發(fā)明的一種傳統(tǒng)智力玩具,它由五塊等腰直角三角形、一塊正方形和一塊平行四邊形共七塊板組成如圖是一個(gè)用七巧板拼成的正方形,若在此正方形中任取一點(diǎn),則此點(diǎn)取自陰影部分的概率為()A. B.C. D.7.與空間向量共線的一個(gè)向量的坐標(biāo)是()A. B.C. D.8.二項(xiàng)式的展開(kāi)式中,各項(xiàng)二項(xiàng)式系數(shù)的和是()A.2 B.8C.16 D.329.執(zhí)行如圖所示的程序框圖,若輸入的的值為3,則輸出的的值為()A.3 B.6C.9 D.1210.邊長(zhǎng)為的正方形沿對(duì)角線折成直二面角,、分別為、的中點(diǎn),是正方形的中心,則的大小為()A. B.C. D.11.設(shè)a,b,c分別是內(nèi)角A,B,C的對(duì)邊,若,,依次成公差不為0的等差數(shù)列,則()A.a,b,c依次成等差數(shù)列 B.,,依次成等差數(shù)列C.,,依次成等比數(shù)列 D.,,依次成等比數(shù)列12.已知拋物線上一點(diǎn)到焦點(diǎn)的距離為3,準(zhǔn)線為l,若l與雙曲線的兩條漸近線所圍成的三角形面積為,則雙曲線C的離心率為()A.3 B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè),若不等式在上恒成立,則的取值范圍是______.14.已知圓的圓心與點(diǎn)關(guān)于直線對(duì)稱,直線與圓相交于、兩點(diǎn),且,則圓的方程為_(kāi)________15.設(shè)、分別是橢圓的左、右焦點(diǎn).若是該橢圓上的一個(gè)動(dòng)點(diǎn),則的最大值為_(kāi)____16.已知等差數(shù)列滿足,,,則公差______三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知拋物線的方程為,點(diǎn),過(guò)點(diǎn)的直線交拋物線于,兩點(diǎn)(1)是否為定值?若是,求出該定值;若不是,說(shuō)明理由;(2)若點(diǎn)是直線上的動(dòng)點(diǎn),且,求面積的最小值18.(12分)大學(xué)生王蕾利用暑假參加社會(huì)實(shí)踐,對(duì)機(jī)械銷(xiāo)售公司月份至月份銷(xiāo)售某種機(jī)械配件的銷(xiāo)售量及銷(xiāo)售單價(jià)進(jìn)行了調(diào)查,銷(xiāo)售單價(jià)和銷(xiāo)售量之間的一組數(shù)據(jù)如表所示:月份銷(xiāo)售單價(jià)(元)銷(xiāo)售量(件)(1)根據(jù)至月份數(shù)據(jù),求出關(guān)于的回歸直線方程;(2)若剩下的月份的數(shù)據(jù)為檢驗(yàn)數(shù)據(jù),并規(guī)定由回歸直線方程得到的估計(jì)數(shù)據(jù)與檢驗(yàn)數(shù)據(jù)的誤差不超過(guò)元,則認(rèn)為所得到的回歸直線方程是理想的,試問(wèn)(1)中所得到的回歸直線方程是否理想?(注:,,參考數(shù)據(jù):,)19.(12分)如圖,在棱長(zhǎng)為的正方體中,為中點(diǎn)(1)求二面角的大??;(2)探究線段上是否存在點(diǎn),使得平面?若存在,確定點(diǎn)的位置;若不存在,說(shuō)明理由20.(12分)圓與軸的交點(diǎn)分別為,且與直線,都相切(1)求圓的方程;(2)圓上是否存在點(diǎn)滿足?若存在,求出滿足條件的所有點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.21.(12分)已知圓:和圓外一點(diǎn),過(guò)點(diǎn)作圓的切線,切線長(zhǎng)為.(1)求圓的標(biāo)準(zhǔn)方程;(2)若圓:,求證:圓和圓相交,并求出兩圓的公共弦長(zhǎng).22.(10分)已知正項(xiàng)數(shù)列的前項(xiàng)和滿足(1)求數(shù)列的通項(xiàng)公式;(2)若,求數(shù)列的前項(xiàng)和.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】首先由點(diǎn)的坐標(biāo)滿足圓的方程來(lái)確定點(diǎn)在圓上,然后求出過(guò)點(diǎn)的圓的切線方程,最后由兩直線的垂直關(guān)系轉(zhuǎn)化為斜率關(guān)系求解.【詳解】由題知,圓的圓心,半徑.因?yàn)?,所以點(diǎn)在圓上,所以過(guò)點(diǎn)的圓的切線與直線垂直,設(shè)切線的斜率,則有,即,解得.因?yàn)橹本€與切線垂直,所以,解得.故選:B.2、A【解析】由空間向量垂直的坐標(biāo)表示可求得實(shí)數(shù)的值.【詳解】由已知可得,解得.故選:A.3、A【解析】函數(shù),若,,可得,解得或,則實(shí)數(shù)的取值范圍是,故選A.4、B【解析】由漸近線方程,設(shè)出雙曲線方程,結(jié)合與橢圓有相同的焦點(diǎn),求出雙曲線方程.【詳解】∵雙曲線:的一條漸近線方程為:∴設(shè)雙曲線:∵雙曲線與橢圓有相同的焦點(diǎn)∴,解得:∴雙曲線的方程為.故選:B.5、A【解析】∵且,∴,又,∴,故選A.6、D【解析】設(shè)正方形的邊長(zhǎng)為,計(jì)算出陰影部分區(qū)域的面積和正方形區(qū)域的面積,然后利用幾何概型的概率公式計(jì)算出所求事件的概率.【詳解】設(shè)大正方形的邊長(zhǎng)為,則面積為,陰影部分由一個(gè)大等腰直角三角形和一個(gè)梯形組成大等腰直角三角形的面積為,梯形的上底為,下底為,高為,面積為,故所求概率故選:D.7、C【解析】根據(jù)空間向量共線的坐標(biāo)表示即可得出結(jié)果.【詳解】.故選:C.8、D【解析】根據(jù)給定條件利用二項(xiàng)式系數(shù)的性質(zhì)直接計(jì)算作答.【詳解】二項(xiàng)式的展開(kāi)式的各項(xiàng)二項(xiàng)式系數(shù)的和是.故選:D9、A【解析】模擬執(zhí)行程序框圖,根據(jù)輸入數(shù)據(jù),即可求得輸出數(shù)據(jù).【詳解】當(dāng)時(shí),不滿足,故,即輸出的的值為.故選:.10、B【解析】建立空間直角坐標(biāo)系,以向量法去求的大小即可解決.【詳解】由題意可得平面,,則兩兩垂直以O(shè)為原點(diǎn),分別以O(shè)B、OA、OC所在直線為x、y、z軸建立空間直角坐標(biāo)系則,,,,又,則故選:B11、B【解析】由等差數(shù)列的性質(zhì)得,利用正弦定理、余弦定理推導(dǎo)出,從而,,依次成等差數(shù)列.【詳解】解:∵a,b,c分別是內(nèi)角A,B,C的對(duì)邊,,,依次成公差不為0的等差數(shù)列,∴,根據(jù)正弦定理可得,∴,∴,∴,∴,,依次成等差數(shù)列.故選:B.【點(diǎn)睛】本題考查三個(gè)數(shù)成等差數(shù)列或等比數(shù)列的判斷,考查等差數(shù)列、等比數(shù)列的性質(zhì)、正弦定理、余弦定理等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,考查函數(shù)與方程思想,屬于中檔題.12、C【解析】先由已知結(jié)合拋物線的定義求出,從而可得拋物線的準(zhǔn)線方程,則可求出準(zhǔn)線l與兩條漸近線的交點(diǎn)分別為,然后由題意可得,進(jìn)而可求出雙曲線的離心率詳解】依題意,拋物線準(zhǔn)線,由拋物線定義知,解得,則準(zhǔn)線,雙曲線C的兩條漸近線為,于是得準(zhǔn)線l與兩條漸近線的交點(diǎn)分別為,原點(diǎn)為O,則面積,雙曲線C的半焦距為c,離心率為e,則有,解得故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】構(gòu)造,利用導(dǎo)數(shù)求其最大值,結(jié)合已知不等式恒成立,即可確定的范圍.【詳解】令,則且,若得:;若得:;所以在上遞增,在上遞減,故,要使在上恒成立,即.故答案為:.14、【解析】利用對(duì)稱條件求出圓心C的坐標(biāo),借助直線被圓所截弦長(zhǎng)求出圓半徑即可寫(xiě)出圓的方程.【詳解】設(shè)圓的圓心,依題意,,解得,即圓心,點(diǎn)C到直線的距離,因圓截直線所得弦AB長(zhǎng)為6,于是得圓C的半徑所以圓的方程為:.故答案為:15、4【解析】設(shè),寫(xiě)出、的坐標(biāo),利用向量數(shù)量積的坐標(biāo)表示有,根據(jù)橢圓的有界性即可求的最大值.【詳解】由題意知:,,若,∴,,∴,而,則,而,∴當(dāng)時(shí),.故答案為:【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:利用向量數(shù)量積的坐標(biāo)表示及橢圓的有界性求最值.16、2【解析】根據(jù)等差數(shù)列性質(zhì)求得,再根據(jù)題意列出相關(guān)的方程組,解得答案.【詳解】為等差數(shù)列,故由可得:,即,故,故,所以,解得,故答案為:2三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)是,;(2)【解析】(1)由題意設(shè)出所在直線方程,與拋物線方程聯(lián)立,化為關(guān)于的一元二次方程,由根與系數(shù)的關(guān)系即可求得為定值;(2)當(dāng)?shù)男甭蕿?時(shí),求得三角形的面積為;當(dāng)?shù)男甭什粸?時(shí),由弦長(zhǎng)公式求解,再由點(diǎn)到直線的距離公式求到的距離,代入三角形面積公式,利用函數(shù)單調(diào)性可得三角形的面積大于,由此可得面積的最小值【詳解】(1)由題意知,直線斜率存在,不妨設(shè)其方程為,聯(lián)立拋物線的方程可得,設(shè),,則,,所以,,所以,所以是定值(2)當(dāng)直線的斜率為0時(shí),,又,,此時(shí)當(dāng)直線的斜率不力0時(shí),,又因?yàn)?,且直線的斜率不為0,所以,即,所以點(diǎn)到直線的距離,此時(shí),因?yàn)椋?,綜上,面積的最小值為18、(1)(2)回歸直線方程是理想的【解析】(1)根據(jù)表格數(shù)據(jù)求得,利用最小二乘法可求得回歸直線方程;(2)令回歸直線中的可求得估計(jì)數(shù)據(jù),對(duì)比檢驗(yàn)數(shù)據(jù)即可確定結(jié)論.小問(wèn)1詳解】由表格數(shù)據(jù)可知:,,,則,關(guān)于的回歸直線方程為;【小問(wèn)2詳解】令回歸直線中的,則,,(1)中所得到的回歸直線方程是理想的.19、(1)(2)點(diǎn)為線段上靠近點(diǎn)的三等分點(diǎn)【解析】(1)建立空間直角坐標(biāo)系,分別寫(xiě)出點(diǎn)的坐標(biāo),求出兩個(gè)平面的法向量代入公式求解即可;(2)假設(shè)存在,設(shè),利用相等向量求出坐標(biāo),利用線面平行的向量法代入公式計(jì)算即可.【小問(wèn)1詳解】如下圖所示,以為原點(diǎn),,,所在直線分別為軸,軸,軸建立空間直角坐標(biāo)系,則,,,,,,.所以,設(shè)平面的法向量,所以,即,令,則,,所以,連接,因?yàn)椋?,,平面,平面,平面,所以平面,所以為平面的一個(gè)法向量,所以,由圖知,二面角為銳二面角,所以二面角的大小為【小問(wèn)2詳解】假設(shè)在線段上存在點(diǎn),使得平面,設(shè),,,因?yàn)槠矫?,所以,即所以,即解得所以在線段上存在點(diǎn),使得平面,此時(shí)點(diǎn)為線段上靠近點(diǎn)的三等分點(diǎn)20、(1)(2)存在,或【解析】(1)由題意,設(shè)圓心,由圓與兩直線相切,可得圓心到兩直線的距離都等于圓的半徑,進(jìn)而可求,然后求出半徑即可得答案;(2)假設(shè)圓上存在點(diǎn)滿足,利用向量數(shù)量積的坐標(biāo)運(yùn)算化簡(jiǎn),再聯(lián)立圓的方程即可求解.【小問(wèn)1詳解】解:因?yàn)閳A與軸的交點(diǎn)分別為,,所以圓心在弦的垂直平分線上,設(shè)圓心,又圓與直線,都相切,所以,解得,所以圓心,半徑,所以圓的方程為;【小問(wèn)2詳解】解:假設(shè)圓上存在點(diǎn)滿足,則,即①,又,即②,聯(lián)立①②可得或,所以存在點(diǎn)或滿足.21、(1)(2)證明見(jiàn)解析,公共弦長(zhǎng)為【解析】(1)根據(jù)切線長(zhǎng)公式計(jì)算即可得到,然后代入可得圓的方程.(2)聯(lián)立兩圓的方程作差可得直線的方程為,然后利用圓的弦長(zhǎng)公式計(jì)算即可.【小問(wèn)1詳解】圓的標(biāo)準(zhǔn)方程為,所以圓心為,半徑.由勾股定理可得,解得.所以圓的標(biāo)準(zhǔn)方程為.【小問(wèn)2
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 礦井排水井施工合同
- 深圳二手房過(guò)戶流程合同
- 城市綠化帶消火栓施工安裝合同
- 2025標(biāo)準(zhǔn)電纜購(gòu)銷(xiāo)合同范本
- 農(nóng)業(yè)企業(yè)財(cái)務(wù)報(bào)表承諾書(shū)
- 半導(dǎo)體研發(fā)凈化工程承包合同
- 2025公司租房協(xié)議合同范本
- 二零二五年度房屋抵押貸款買(mǎi)賣(mài)三方合同范本2篇
- 醫(yī)院質(zhì)量管控聘用合同
- 低耐電絕緣性涂料施工協(xié)議
- 網(wǎng)絡(luò)安全日志關(guān)聯(lián)分析-洞察分析
- 醫(yī)療美容服務(wù)風(fēng)險(xiǎn)免責(zé)協(xié)議書(shū)
- 2025年度宏泰集團(tuán)應(yīng)屆高校畢業(yè)生夏季招聘【6080人】高頻重點(diǎn)提升(共500題)附帶答案詳解
- 課題申報(bào)書(shū):大中小學(xué)鑄牢中華民族共同體意識(shí)教育一體化研究
- 巖土工程勘察課件0巖土工程勘察
- 《腎上腺腫瘤》課件
- 2024-2030年中國(guó)典當(dāng)行業(yè)發(fā)展前景預(yù)測(cè)及融資策略分析報(bào)告
- 《乘用車(chē)越野性能主觀評(píng)價(jià)方法》
- 幼師個(gè)人成長(zhǎng)發(fā)展規(guī)劃
- 2024-2025學(xué)年北師大版高二上學(xué)期期末英語(yǔ)試題及解答參考
- 批發(fā)面包采購(gòu)合同范本
評(píng)論
0/150
提交評(píng)論