版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
內(nèi)蒙古自治區(qū)烏蘭察布市集寧區(qū)2025屆高二數(shù)學第一學期期末統(tǒng)考模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知點是橢圓上的一點,點,則的最小值為A. B.C. D.2.設(shè)是定義在R上的可導(dǎo)函數(shù),若(為常數(shù)),則()A. B.C. D.3.已知圓,過點P的直線l被圓C所截,且截得最長弦的長度與最短弦的長度比值為5∶4,若O為坐標原點,則最大值為()A.3 B.4C.5 D.64.已知橢圓的兩個焦點分別為,若橢圓上不存在點,使得是鈍角,則橢圓離心率的取值范圍是()A. B.C. D.5.從某個角度觀察籃球(如圖甲),可以得到一個對稱的平面圖形,如圖乙所示,籃球的外輪廓為圓,將籃球表面的粘合線視為坐標軸和雙曲線,若坐標軸和雙曲線與圓的交點將圓的周長八等分,且,則該雙曲線的離心率為()A. B.C.2 D.6.已知數(shù)列滿足,,則的最小值為()A. B.C. D.7.若集合,,則A. B.C. D.8.若雙曲線的兩個焦點為,點是上的一點,且,則雙曲線的漸近線與軸的夾角的取值范圍是()A. B.C. D.9.已知直線,,,則m值為()A. B.C.3 D.1010.已知為兩條不同的直線,為兩個不同的平面,則下列結(jié)論正確的是()A.若,則B.若,則C.若,則D.若,則11.設(shè)為實數(shù),則曲線:不可能是()A.拋物線 B.雙曲線C.圓 D.橢圓12.從裝有2個紅球和2個黑球的口袋內(nèi)任取兩個球,那么互斥而不對立的事件是()A.至少有一個黑球與都是黑球B.至少有一個黑球與至少有一個紅球C.恰好有一個黑球與恰好有兩個黑球D.至少有一個黑球與都是紅球二、填空題:本題共4小題,每小題5分,共20分。13.若圓平分圓的周長,則直線被圓所截得的弦長為____________14.已知實數(shù),滿足,則的最大值為______.15.直線與圓相交于A,B兩點,則______16.已知向量,,若與垂直,則___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)(1)求單調(diào)增區(qū)間;(2)當時,恒成立,求實數(shù)的取值范圍.18.(12分)已知內(nèi)角A,B,C的對邊分別為a,b,c,且B,A,C成等差數(shù)列.(1)求A的大小;(2)若,且的面積為,求的周長.19.(12分)如圖,已知等腰梯形,,為等腰直角三角形,,把沿折起(1)當時,求證:;(2)當平面平面時,求平面與平面所成二面角的平面角的正弦值20.(12分)已知圓,圓心在直線上(1)求圓的標準方程;(2)求直線被圓截得的弦的長21.(12分)已知滿足,.(1)求證:是等差數(shù)列,求的通項公式;(2)若,的前項和是,求證:.22.(10分)已知.(1)求在上的單調(diào)遞增區(qū)間;(2)已知銳角內(nèi)角,,的對邊長分別是,,,若,.求面積的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】設(shè),則,.所以當時,的最小值為.故選D.2、C【解析】根據(jù)導(dǎo)數(shù)的定義即可求解.【詳解】.故選:C.3、C【解析】由題意,點P在圓C內(nèi),且最長弦的長度為直徑長10,則最短弦的長度為8,進而可得,所以點P的軌跡為以C為圓心,半徑為3的圓,從而即可求解.【詳解】解:由題意,圓,所以圓C是以為圓心,半徑為5的圓,因為過點P的直線l被圓C所截,且截得最長弦的長度與最短弦的長度比值為5∶4,所以點P在圓C內(nèi),且最長弦的長度為直徑長10,則最短弦的長度為8,所以由弦長公式有,所以點P的軌跡為以C為圓心,半徑為3的圓,所以,故選:C.4、C【解析】點P取端軸的一個端點時,使得∠F1PF2是最大角.已知橢圓上不存在點P,使得∠F1PF2是鈍角,可得b≥c,利用離心率計算公式即可得出【詳解】∵點P取端軸的一個端點時,使得∠F1PF2是最大角已知橢圓上不存在點P,使得∠F1PF2是鈍角,∴b≥c,可得a2﹣c2≥c2,可得:a∴故選C【點睛】本題考查了橢圓的標準方程及其性質(zhì),考查了推理能力與計算能力,屬于中檔題.求橢圓的離心率(或離心率的取值范圍),常見有兩種方法:①求出,代入公式;②只需要根據(jù)一個條件得到關(guān)于的齊次式,結(jié)合轉(zhuǎn)化為的齊次式,然后等式(不等式)兩邊分別除以或轉(zhuǎn)化為關(guān)于的方程(不等式),解方程(不等式)即可得(的取值范圍).5、B【解析】設(shè)出雙曲線方程,把雙曲線上的點的坐標表示出來并代入到方程中,找到的關(guān)系即可求解.【詳解】以O(shè)為原點,AD所在直線為x軸建系,不妨設(shè),則該雙曲線過點且,將點代入方程,故離心率為,故選:B【點睛】本題考查已知點在雙曲線上求雙曲線離心率的方法,屬于基礎(chǔ)題目6、C【解析】采用疊加法求出,由可得,結(jié)合對勾函數(shù)性質(zhì)分析在或6取到最小值,代值運算即可求解.【詳解】因為,所以,,,,式相加可得,所以,,當且僅當取到,但,,所以時,當時,,,所以的最小值為.故選:C7、A【解析】通過解不等式得出集合B,可以做出集合A與集合B的關(guān)系示意圖,可得出選項.【詳解】因為,解不等式即,所以或,所以集合,作出集合A與集合B的示意圖如下圖所示:所以:,故選A【點睛】本題考查集合間的交集運算,屬于基礎(chǔ)題.8、B【解析】由條件結(jié)合雙曲線的定義可得,然后可得,然后可求出的范圍即可.【詳解】由雙曲線的定義可得,結(jié)合可得當點不為雙曲線的頂點時,可得,即當點為雙曲線的頂點時,可得,即所以,所以,所以所以雙曲線的漸近線與軸的夾角的取值范圍是故選:B9、C【解析】根據(jù)兩直線垂直的充要條件得到方程,解得即可;【詳解】解:因為,且,所以,解得;故選:C10、D【解析】根據(jù)空間里面直線與平面、平面與平面位置關(guān)系的相關(guān)定理逐項判斷即可.【詳解】A,若,則或異面,故該選項錯誤;B,若,則或相交,故該選項錯誤;C,若,則α,β不一定垂直,故該選項錯誤;D,若,則利用面面垂直的性質(zhì)可得,故該選項正確.故選:D.11、A【解析】根據(jù)圓的方程、橢圓的方程、雙曲線的方程和拋物線的方程特征即可判斷.【詳解】解:對A:因為曲線C的方程中都是二次項,所以根據(jù)拋物線標準方程的特征曲線C不可能是拋物線,故選項A正確;對B:當時,曲線C為雙曲線,故選項B錯誤;對C:當時,曲線C為圓,故選項C錯誤;對D:當且時,曲線C為橢圓,故選項D錯誤;故選:A.12、C【解析】列舉每個事件所包含的基本事件,結(jié)合互斥事件和對立事件的定義,逐項判斷.【詳解】A:事件:“至少有一個黑球”與事件:“都是黑球”可以同時發(fā)生,如:兩個都是黑球,這兩個事件不是互斥事件,故錯誤;B:事件:“至少有一個黑球”與事件:“至少有一個紅球”可以同時發(fā)生,如:一個紅球一個黑球,故錯誤;C:事件:“恰好有一個黑球”與事件:“恰有兩個黑球”不能同時發(fā)生,但從口袋中任取兩個球時還有可能是兩個都是紅球,兩個事件是互斥事件但不是對立事件,故正確D:事件:“至少有一個黑球”與“都是紅球”不能同時發(fā)生,但一定會有一個發(fā)生,這兩個事件是對立事件,故錯誤;故選:C二、填空題:本題共4小題,每小題5分,共20分。13、6【解析】根據(jù)兩圓的公共弦過圓的圓心即可獲解【詳解】兩圓相減得公共弦所在的直線方程為由題知兩圓的公共弦過圓的圓心,所以即,又,所以到直線的距離所以直線被圓所截得的弦長為故答案為:614、【解析】由約束條件作出可行域,化目標函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,聯(lián)立方程組得到最優(yōu)解的坐標,代入目標函數(shù)得答案.【詳解】由約束條件作出可行域如圖所示,化目標函數(shù)為,由圖可知,當直線過點時,直線在y軸上的截距最大,z最大,聯(lián)立方程組,解得點,則取得最大值為.故答案為:【點睛】本題考查的是線性規(guī)劃問題,解決線性規(guī)劃問題的實質(zhì)是把代數(shù)問題幾何化,即數(shù)形結(jié)合的思想,需要注意的是:一,準確無誤作出可行域;二,畫目標函數(shù)所對應(yīng)直線時,要注意讓其斜率與約束條件中的直線的斜率比較;三,一般情況下,目標函數(shù)的最值會在可行域的端點或邊界上取得.15、6【解析】利用弦心距、半徑與弦長的幾何關(guān)系,結(jié)合點線距離公式即可求弦長.【詳解】由題設(shè),圓心為,則圓心到直線距離為,又圓的半徑為,故.故答案為:16、【解析】根據(jù)與垂直,可知,根據(jù)空間向量的數(shù)量積運算可求出的值,結(jié)合向量坐標求向量模的求法,即可得出結(jié)果.【詳解】解:與垂直,,則,解得:,,則,.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)單調(diào)增區(qū)間為;(2).【解析】(1)求導(dǎo)由求解.(2)將時,恒成立,轉(zhuǎn)化為時,恒成立,令用導(dǎo)數(shù)法由求解即可.【詳解】(1)因為函數(shù)所以令,解得,所以單調(diào)增區(qū)間為.(2)因為時,恒成立,所以時,恒成立,令則令因為時,恒成立,所以在單調(diào)遞減.當時,在單調(diào)遞減,故符合要求;當時,單調(diào)遞減,故存在使得則當時單調(diào)遞增,不符合要求;當時,單調(diào)遞減,故存在使得則當時單調(diào)遞增,不符合要求.綜上.【點睛】方法點睛:恒(能)成立問題的解法:若在區(qū)間D上有最值,則(1)恒成立:;;(2)能成立:;.若能分離常數(shù),即將問題轉(zhuǎn)化為:(或),則(1)恒成立:;;(2)能成立:;;18、(1)(2)【解析】(1)由等差數(shù)列的性質(zhì)結(jié)合內(nèi)角和定理得出A的大?。唬?)先由余弦定理,結(jié)合,,得到的關(guān)系式,再由的面積為,得到的關(guān)系式,兩式聯(lián)立可求出,進而可確定結(jié)果.【小問1詳解】因為B,A,C成等差數(shù)列,所以,所以.【小問2詳解】因為,,由余弦定理可得:;又的面積為,所以,所以,所以,所以周長為.19、(1)證明見解析(2)【解析】(1)取的中點E,連,證明四邊形為平行四邊形,從而可得為等邊三角形,四邊形為菱形,從而可證,,即可得平面,再根據(jù)線面垂直的性質(zhì)即可得證;(2)取的中點M,連接,以B為空間坐標原點,向量分別為x,y,z軸建立空間直角坐標系,利用向量法即可得出答案.【小問1詳解】解:取的中點E,連,∵,∴,∵,∴四邊形為平行四邊形,∵,∴,∵,∴為等邊三角形,四邊形為菱形,∴,,∴∴,∵,,,平面,,∴平面,∵平面,∴;【小問2詳解】解:取的中點M,連接,由(1)知,,∵平面平面,,∴平面,以B為空間坐標原點,向量分別為x,y,z軸建立空間直角坐標系,則,設(shè)平面的法向量為,由,,有,取,可得,設(shè)平面的法向量為,由,,有,取,有,有,故平面與平面所成二面角的正弦值為20、(1);(2)【解析】(1)由圓的一般式方程求出圓心代入直線即可求出得值,即可求解;(2)先計算圓心到直線的距離,利用即可求弦長.【詳解】(1)由圓,可得所以圓心為,半徑又圓心在直線上,即,解得所以圓的一般方程為,故圓的標準方程為(2)由(1)知,圓心,半徑圓心到直線的距離則直線被圓截得的弦的長為所以,直線被圓截得弦的長為【點睛】方法點睛:圓的弦長的求法(1)幾何法,設(shè)圓的半徑為,弦心距為,弦長為,則;(2)代數(shù)法,設(shè)直線與圓相交于,,聯(lián)立直線與圓的方程,消去得到一個關(guān)于的一元二次方程,從而可求出,,根據(jù)弦長公式,即可得出結(jié)果.21、(1)證明見解析,(2)證明見解析【解析】(1)在等式兩邊同時除以,結(jié)合等差數(shù)列的定義可證得數(shù)列為等差數(shù)列,確定該數(shù)列的首項和公差,可求得的表達式;(2)求得,利用裂項相消法求得,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年湖北體育職業(yè)學院高職單招職業(yè)適應(yīng)性測試歷年參考題庫含答案解析
- 2024年泉州工程職業(yè)技術(shù)學院高職單招職業(yè)適應(yīng)性測試歷年參考題庫含答案解析
- 2024年江西傳媒職業(yè)學院高職單招語文歷年參考題庫含答案解析
- 2024年撫州幼兒師范高等??茖W校高職單招職業(yè)技能測驗歷年參考題庫(頻考版)含答案解析
- 2024年川南幼兒師范高等??茖W校高職單招語文歷年參考題庫含答案解析
- 2024年山東畜牧獸醫(yī)職業(yè)學院高職單招職業(yè)技能測驗歷年參考題庫(頻考版)含答案解析
- 中國新型顯示行業(yè)市場競爭現(xiàn)狀及發(fā)展趨向研判報告
- 中國六氫化鄰苯二甲酸酐行業(yè)市場競爭態(tài)勢及發(fā)展趨向研判報告
- 福建省南平市徐市中學2020年高二語文月考試卷含解析
- 2025年遼寧遼陽道德與法制中考試卷
- 第1課+中華文明的起源與早期國家+課件+-2023-2024學年高中歷史統(tǒng)編版2019必修中外歷史綱要上冊+
- 大廈物業(yè)管理保潔服務(wù)標準5篇
- 反面典型案例剖析材料范文(通用6篇)
- 水利混凝土試塊強度計算評定表
- 人教版數(shù)學五年級上冊期末復(fù)習操作題專項集訓(xùn)(含答案)
- 通達信公式編寫學習資料
- 小學勞動教育課程方案田園生態(tài)課程方案
- 城市設(shè)計與城市更新培訓(xùn)
- 2023年貴州省銅仁市中考數(shù)學真題試題含解析
- 人力資源管理效能評價方法研究綜述
- 世界衛(wèi)生組織生存質(zhì)量測量表(WHOQOL-BREF)
評論
0/150
提交評論