版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
山西省呂梁育星中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測(cè)試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫(xiě)在試題卷和答題卡上。用2B鉛筆將試卷類(lèi)型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫(xiě)在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無(wú)效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.函數(shù)的定義域?yàn)?,其?dǎo)函數(shù)的圖像如圖所示,則函數(shù)極值點(diǎn)的個(gè)數(shù)為()A.2 B.3C.4 D.52.若數(shù)列1,a,b,c,9是等比數(shù)列,則實(shí)數(shù)b的值為()A.5 B.C.3 D.3或3.已知函數(shù),,若對(duì)任意的,,都有成立,則實(shí)數(shù)的取值范圍是()A. B.C. D.4.已知雙曲線(xiàn):的左、右焦點(diǎn)分別為,,過(guò)點(diǎn)且斜率為的直線(xiàn)與雙曲線(xiàn)在第二象限的交點(diǎn)為,若,則雙曲線(xiàn)的離心率是()A B.C. D.5.已知數(shù)列是以1為首項(xiàng),2為公差的等差數(shù)列,是以1為首項(xiàng),2為公比的等比數(shù)列,設(shè),,則當(dāng)時(shí),n的最大值是()A.8 B.9C.10 D.116.()A.-2 B.0C.2 D.37.設(shè),,,則,,大小關(guān)系是A. B.C. D.8.設(shè)命題甲:,命題乙:直線(xiàn)與直線(xiàn)平行,則()A.甲是乙的充分不必要條件 B.甲是乙的必要不充分條件C.甲是乙的充要條件 D.甲是乙的既不充分也不必要條件9.若數(shù)列對(duì)任意滿(mǎn)足,下面選項(xiàng)中關(guān)于數(shù)列的說(shuō)法正確的是()A.一定是等差數(shù)列B.一定是等比數(shù)列C.可以既是等差數(shù)列又是等比數(shù)列D.可以既不是等差數(shù)列又不是等比數(shù)列10.一直線(xiàn)過(guò)點(diǎn),則此直線(xiàn)的傾斜角為()A.45° B.135°C.-45° D.-135°11.已知橢圓的左、右焦點(diǎn)分別是,焦距,過(guò)點(diǎn)的直線(xiàn)與橢圓交于兩點(diǎn),若,且,則橢圓C的方程為()A. B.C. D.12.(2016新課標(biāo)全國(guó)Ⅱ理科)已知F1,F(xiàn)2是雙曲線(xiàn)E:的左,右焦點(diǎn),點(diǎn)M在E上,MF1與軸垂直,sin,則E的離心率為A. B.C. D.2二、填空題:本題共4小題,每小題5分,共20分。13.如圖,莖葉圖所示數(shù)據(jù)平均分為91,則數(shù)字x應(yīng)該是__________14.已知函數(shù),,若,,使得,則實(shí)數(shù)a的取值范圍是______15.如圖①,用一個(gè)平面去截圓錐,得到的截口曲線(xiàn)是橢圓.許多人從純幾何的角度出發(fā)對(duì)這個(gè)問(wèn)題進(jìn)行過(guò)研究,其中比利時(shí)數(shù)學(xué)家(1794-1847)的方法非常巧妙,極具創(chuàng)造性.在圓錐內(nèi)放兩個(gè)大小不同的球,使得它們分別與圓錐的側(cè)面,截面相切,兩個(gè)球分別與截面相切于,在截口曲線(xiàn)上任取一點(diǎn),過(guò)作圓錐的母線(xiàn),分別與兩個(gè)球相切于,由球和圓的幾何性質(zhì),可以知道,,于是.由的產(chǎn)生方法可知,它們之間的距離是定值,由橢圓定義可知,截口曲線(xiàn)是以為焦點(diǎn)的橢圓.如圖②,一個(gè)半徑為2的球放在桌面上,桌面上方有一個(gè)點(diǎn)光源,則球在桌面上的投影是橢圓.已知是橢圓的長(zhǎng)軸,垂直于桌面且與球相切,,則橢圓的離心率為_(kāi)__________.16.曲線(xiàn)的長(zhǎng)度為_(kāi)___________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知點(diǎn)是橢圓E:一點(diǎn),且橢圓的離心率為.(1)求此橢圓E方程;(2)設(shè)橢圓的左頂點(diǎn)為A,過(guò)點(diǎn)A向上作一射線(xiàn)交橢圓E于點(diǎn)B,以AB為邊作矩形ABCD,使得對(duì)邊CD經(jīng)過(guò)橢圓中心O.(i)求矩形ABCD面積的最大值;(ii)問(wèn):矩形ABCD能否為正方形?若能,求出直線(xiàn)AB的方程;若不能,請(qǐng)說(shuō)明理由.18.(12分)如圖是一個(gè)正三棱柱(以為底面)被一平面所截得到的幾何體,截面為ABC.已知,,M為AB中點(diǎn).(1)證明:平面;(2)求此幾何體的體積.19.(12分)已知橢圓C:的長(zhǎng)軸長(zhǎng)為4,離心率e是方程的一根(1)求橢圓C的方程;(2)已知O是坐標(biāo)原點(diǎn),斜率為k的直線(xiàn)l經(jīng)過(guò)點(diǎn),已知直線(xiàn)l與橢圓C相交于點(diǎn)A,B,求面積的最大值20.(12分)如圖,在長(zhǎng)方體中,,若點(diǎn)P為棱上一點(diǎn),且,Q,R分別為棱上的點(diǎn),且.(1)求直線(xiàn)與平面所成角的正弦值;(2)求平面與平面的夾角的余弦值.21.(12分)已知圓,P(2,0),M點(diǎn)是圓Q上任意一點(diǎn),線(xiàn)段PM的垂直平分線(xiàn)交半徑MQ于點(diǎn)C,當(dāng)M點(diǎn)在圓上運(yùn)動(dòng)時(shí),點(diǎn)C的軌跡為曲線(xiàn)C(1)求曲線(xiàn)C方程;(2)已知直線(xiàn)l:x=8,A、B是曲線(xiàn)C上的兩點(diǎn),且不在x軸上,,垂足為,,垂足為,若D(3,0),且的面積是△ABD面積的5倍,求△ABD面積的最大值22.(10分)已知P={x|x2-8x-20≤0},非空集合S={x|1-m≤x≤1+m}.若x∈P是x∈S的必要條件,求m的取值范圍
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】根據(jù)給定的導(dǎo)函數(shù)的圖象,結(jié)合函數(shù)的極值的定義,即可求解.【詳解】如圖所示,設(shè)導(dǎo)函數(shù)的圖象與軸的交點(diǎn)分別為,根據(jù)函數(shù)的極值的定義可知在該點(diǎn)處的左右兩側(cè)的導(dǎo)數(shù)符號(hào)相反,可得為函數(shù)的極大值點(diǎn),為函數(shù)的極小值點(diǎn),所以函數(shù)極值點(diǎn)的個(gè)數(shù)為4個(gè).故選:C.2、C【解析】根據(jù)等比數(shù)列的定義,利用等比數(shù)列的通項(xiàng)公式求解【詳解】解:設(shè)該等比數(shù)列公比為q,∵數(shù)列1,a,b,c,9是等比數(shù)列,∴,,∴,故,解得,∴故選:C3、B【解析】根據(jù)題意,將問(wèn)題轉(zhuǎn)化為對(duì)任意的,,利用導(dǎo)數(shù)求得的最大值,再分離參數(shù),構(gòu)造函數(shù),利用導(dǎo)數(shù)求其最大值,即可求得參數(shù)的取值范圍.【詳解】由題可知:對(duì)任意的,,都有恒成立,故可得對(duì)任意的,;又,則,故在單調(diào)遞減,在單調(diào)遞增,又,,則當(dāng)時(shí),,.對(duì)任意的,,即,恒成立.也即,不妨令,則,故在單調(diào)遞增,在單調(diào)遞減.故,則只需.故選:B.4、B【解析】根據(jù)得到三角形為等腰三角形,然后結(jié)合雙曲線(xiàn)的定義得到,設(shè),進(jìn)而作,得出,由此求出結(jié)果【詳解】因?yàn)椋?,即所以,由雙曲線(xiàn)的定義,知,設(shè),則,易得,如圖,作,為垂足,則,所以,即,即雙曲線(xiàn)的離心率為.故選:B5、B【解析】先求出數(shù)列和的通項(xiàng)公式,然后利用分組求和求出,再對(duì)進(jìn)行賦值即可求解.【詳解】解:因?yàn)閿?shù)列是以1為首項(xiàng),2為公差的等差數(shù)列所以因?yàn)槭且?為首項(xiàng),2為公比的等比數(shù)列所以由得:當(dāng)時(shí),即當(dāng)時(shí),當(dāng)時(shí),所以n的最大值是.故選:B.【點(diǎn)睛】關(guān)鍵點(diǎn)睛:本題的關(guān)鍵是利用分組求和求出,再通過(guò)賦值法即可求出使不等式成立的的最大值.6、C【解析】根據(jù)定積分公式直接計(jì)算即可求得結(jié)果【詳解】由故選:C7、A【解析】構(gòu)造函數(shù),根據(jù)的單調(diào)性可得(3),從而得到,,的大小關(guān)系【詳解】考查函數(shù),則,在上單調(diào)遞增,,(3),即,,故選:【點(diǎn)睛】本題考查了利用函數(shù)的單調(diào)性比較大小,考查了構(gòu)造法和轉(zhuǎn)化思想,屬基礎(chǔ)題8、A【解析】根據(jù)充分條件和必要條件的定義,結(jié)合兩直線(xiàn)平行的性質(zhì)進(jìn)行求解即可.【詳解】當(dāng)時(shí),直線(xiàn)的方程為,直線(xiàn)方程為,此時(shí),直線(xiàn)與直線(xiàn)平行,即甲乙;直線(xiàn)和直線(xiàn)平行,則,解得或,即乙甲;則甲是乙的充分不必要條件.故選:.9、D【解析】由已知可得或,結(jié)合等差數(shù)列和等比數(shù)列的定義,可得答案【詳解】由,得或,即或,若,則數(shù)列是等差數(shù)列,則B錯(cuò)誤;若,當(dāng)時(shí),數(shù)列是等差數(shù)列,當(dāng)時(shí),數(shù)列是等比數(shù)列,則A錯(cuò)誤數(shù)列是等差數(shù)列,也可以是等比數(shù)列;由,不能得到數(shù)列為非0常數(shù)列,則不可以既是等差又是等比數(shù)列,則C錯(cuò)誤;可以既不是等差又不是等比數(shù)列,如1,3,5,10,20,,故D正確;故選:D10、A【解析】根據(jù)斜率公式求得直線(xiàn)的斜率,得到,即可求解.【詳解】設(shè)直線(xiàn)的傾斜角為,由斜率公式,可得,即,因?yàn)椋?,即此直線(xiàn)的傾斜角為.故選:A.11、A【解析】畫(huà)出圖形,利用已知條件,推出,延長(zhǎng)交橢圓于點(diǎn),得到直角和直角,設(shè),則,根據(jù)橢圓的定義轉(zhuǎn)化求解,即可求得橢圓的方程.【詳解】如圖所示,,則,延長(zhǎng)交橢圓于點(diǎn),可得直角和直角,設(shè),則,根據(jù)橢圓的定義,可得,在直角中,,解得,又在中,,代入可得,所以,所以橢圓的方程為.故選:A.12、A【解析】由已知可得,故選A.考點(diǎn):1、雙曲線(xiàn)及其方程;2、雙曲線(xiàn)的離心率.【方法點(diǎn)晴】本題考查雙曲線(xiàn)及其方程、雙曲線(xiàn)的離心率.,涉及方程思想、數(shù)形結(jié)合思想和轉(zhuǎn)化化歸思想,考查邏輯思維能力、等價(jià)轉(zhuǎn)化能力、運(yùn)算求解能力,綜合性較強(qiáng),屬于較難題型.由已知可得,利用雙曲線(xiàn)的定義和雙曲線(xiàn)的通徑公式,可以降低計(jì)算量,提高解題速度.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】結(jié)合莖葉圖以及平均數(shù)列出方程,即可求出結(jié)果.【詳解】由題意可知,解得,故答案為:1.14、【解析】先求出兩函數(shù)在上的值域,再由已知條件可得,且,列不等式組可求得結(jié)果【詳解】由,得,當(dāng)時(shí),,所以在上單調(diào)遞減,所以,即,由,得,當(dāng)時(shí),,所以在上單調(diào)遞增,所以,即,因?yàn)?,,使得,所以,解得,故答案為?5、##0.5【解析】利用球與圓錐相切,得出截面,在平面圖形中求解,以及圓錐曲線(xiàn)的來(lái)源來(lái)理解切點(diǎn)為橢圓的一個(gè)焦點(diǎn),求出,得出離心率.【詳解】設(shè)球切于,切于E,,球半徑為2,所以,,∴,又中,,,故橢圓長(zhǎng)軸長(zhǎng)為,,根據(jù)橢圓在圓錐中截面與二球相切的切點(diǎn)為橢圓的焦點(diǎn)知:球O與相切的切點(diǎn)為橢圓的一個(gè)焦點(diǎn),且,,橢圓的離心率為.故答案:.16、【解析】曲線(xiàn)的圖形是:以原點(diǎn)為圓心,以2為半徑的圓的左半圓,進(jìn)而可求出結(jié)果.【詳解】解:由得,所以曲線(xiàn)()的圖形是:以原點(diǎn)為圓心,以2為半徑的圓的左半圓,∴曲線(xiàn)()的長(zhǎng)度是,故答案為:.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2)(i);(ii).【解析】(1)根據(jù)給定條件列出關(guān)于a,b的方程組,解方程組代入得解.(2)(i)設(shè)直線(xiàn)AB方程,與橢圓方程聯(lián)立求出線(xiàn)段AB長(zhǎng),再求出原點(diǎn)O到直線(xiàn)AB距離列出矩形面積求解即可;(ii)由(i)及列出方程,由方程解的情況即可判斷計(jì)算作答.【小問(wèn)1詳解】令橢圓半焦距為c,依題意,,解得,所以橢圓E的方程為:.【小問(wèn)2詳解】(i)由(1)知,,設(shè)直線(xiàn)AB的斜率為,則直線(xiàn)AB的方程為:,由消去y并整理得:,點(diǎn)的橫坐標(biāo),則點(diǎn)的橫坐標(biāo)有:,解得,則有,因矩形的邊CD過(guò)原點(diǎn)O,則,因此,矩形的面積,當(dāng)且僅當(dāng),即時(shí)取“=”,所以矩形ABCD面積的最大值是.(ii)假定矩形ABCD能成為正方形,則,由(i)知:,整理得:,即,而,解得,所以矩形ABCD能成為正方形,此時(shí),直線(xiàn)AB的方程為.【點(diǎn)睛】思路點(diǎn)睛:圓錐曲線(xiàn)中的最值問(wèn)題,往往需要利用韋達(dá)定理構(gòu)建目標(biāo)的函數(shù)關(guān)系式,自變量可以斜率或點(diǎn)的橫、縱坐標(biāo)等.而目標(biāo)函數(shù)的最值可以通過(guò)二次函數(shù)或基本不等式或?qū)?shù)等求得.18、(1)證明見(jiàn)解析(2)【解析】(1)取的中點(diǎn),連接,,可得四邊形為平行四邊形,從而可得,然后證明平面,從而可證明.(2)過(guò)作截面平面,分別交,于,,連接,作于,由所求幾何體體積為從而可得答案.【小問(wèn)1詳解】如圖,取的中點(diǎn),連接,,因?yàn)椋謩e是,的中點(diǎn).所以且又因?yàn)椋?,所以且,故四邊形為平行四邊形,所?因?yàn)檎切?,是的中點(diǎn),所以,又因?yàn)槠矫妫?,又,所以平面又,所以平?【小問(wèn)2詳解】如圖,過(guò)作截面平面,分別交,于,,連接,作于,因?yàn)槠矫嫫矫?,所以,結(jié)合直三棱柱的性質(zhì),則平面因?yàn)?,,,所?所以所求幾何體體積為19、(1);(2).【解析】(1)待定系數(shù)法求橢圓的方程;(2)設(shè)直線(xiàn)的方程為,,,用“設(shè)而不求法”表示出三角形OAB的面積.令轉(zhuǎn)化為關(guān)于t的函數(shù),利用函數(shù)求最值.【詳解】(1)依題意得:,∴.方程的根為或.∵橢圓的離心率,∴,∴∴∴橢圓方程為.(2)設(shè)直線(xiàn)的方程為,,由,得,則,點(diǎn)到直線(xiàn)的距離為,.令,則..∵在單調(diào)遞增,∴時(shí).有最小值3.此時(shí)有最大值.∴面積的最大值為.20、(1)(2)【解析】(1)建立如圖所示的空間直角坐標(biāo)系,用空間向量法求線(xiàn)面角;(2)用空間向量法求二面角【小問(wèn)1詳解】以D為坐標(biāo)原點(diǎn),射線(xiàn)方向?yàn)閤,y,z軸正方向建立空間直角坐標(biāo)系.當(dāng)時(shí),,所以,設(shè)平面的法向量為,所以,即不妨得,,又,所以,則【小問(wèn)2詳解】在長(zhǎng)方體中,因?yàn)槠矫?,所以平面平面,因?yàn)槠矫媾c平面交于,因?yàn)樗倪呅螢檎叫?,所以,所以平面,即為平面的一個(gè)法向量,,所以,又平面的法向量為,所以.21、(1)(2)【解析】(1)由定義法求出曲線(xiàn)C的方程;(2)先判斷出直線(xiàn)AB過(guò)定點(diǎn)H(2,0)或H(4,0).當(dāng)AB過(guò)定點(diǎn)H(4,0),求出最大;當(dāng)H(2,0)時(shí),可設(shè)直線(xiàn)AB:.用“設(shè)而不求法”表示出,不妨設(shè)(),利用函數(shù)的單調(diào)性求出△ABD面積的最大值.【小問(wèn)1詳解】因?yàn)榫€(xiàn)段PM的垂直平分線(xiàn)交半徑MQ于點(diǎn)C,所以,所以,符合橢圓的定義,所以點(diǎn)C的軌跡為以P、Q為焦點(diǎn)的橢圓,其中,所以,所以曲線(xiàn)C的方程為.【小問(wèn)2詳解】不妨設(shè)直線(xiàn)l
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 企業(yè)管理服務(wù)咨詢(xún)服務(wù)簡(jiǎn)單合同
- 沖孔灌注樁施工勞務(wù)分包合同
- 三方合同補(bǔ)充協(xié)議書(shū)
- 資產(chǎn)買(mǎi)賣(mài)合同
- 給水、污水泵設(shè)備安裝合同
- 地毯購(gòu)銷(xiāo)合同范本地毯購(gòu)銷(xiāo)合同
- 在線(xiàn)教育系統(tǒng)共建共享合同
- 產(chǎn)品銷(xiāo)售合同范本集錦
- 醫(yī)療器械銷(xiāo)售合同簡(jiǎn)易模板
- 社區(qū)團(tuán)購(gòu)平臺(tái)搭建及運(yùn)營(yíng)合同
- 2024年濰坊工程職業(yè)學(xué)院?jiǎn)握新殬I(yè)適應(yīng)性測(cè)試題庫(kù)完美版
- GB/T 44823-2024綠色礦山評(píng)價(jià)通則
- 人教版英語(yǔ)高考試卷與參考答案(2024年)
- 紅樓夢(mèng)服飾文化
- 浙江省中小學(xué)心理健康教育課程標(biāo)準(zhǔn)
- 《共情的力量》課件
- 2022年中國(guó)電信維護(hù)崗位認(rèn)證動(dòng)力專(zhuān)業(yè)考試題庫(kù)大全-上(單選、多選題)
- 水平二(四年級(jí)第一學(xué)期)體育《小足球(18課時(shí))》大單元教學(xué)計(jì)劃
- 《關(guān)于時(shí)間管理》課件
- 醫(yī)藥高等數(shù)學(xué)智慧樹(shù)知到課后章節(jié)答案2023年下浙江中醫(yī)藥大學(xué)
- 城市道路智慧路燈項(xiàng)目 投標(biāo)方案(技術(shù)標(biāo))
評(píng)論
0/150
提交評(píng)論