版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
吉林省吉林市吉林地區(qū)普通高中友好學(xué)校聯(lián)合體第三十一屆2025屆數(shù)學(xué)高二上期末達標(biāo)檢測試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知圓的圓心到直線的距離為,則圓與圓的位置關(guān)系是()A.相交 B.內(nèi)切C.外切 D.外離2.已知雙曲線方程為,過點的直線與雙曲線只有一個公共點,則符合題意的直線的條數(shù)共有()A.4條 B.3條C.2條 D.1條3.將6位志愿者分成4組,其中兩個組各2人,另兩個組各1人,分赴廣交會的四個不同地方服務(wù),不同的分配方案有()種A.· B.·C. D.4.、是橢圓的左、右焦點,點在橢圓上,,過作的角平分線的垂線,垂足為,則的長為A.1 B.2C.3 D.45.在棱長為2的正方體中,為線段的中點,則點到直線的距離為()A. B.C. D.6.曲線:在點處的切線方程為A. B.C. D.7.設(shè)平面的法向量為,平面的法向量為,若,則的值為()A.-5 B.-3C.1 D.78.已知函數(shù)是定義在上奇函數(shù),,當(dāng)時,有成立,則不等式的解集是()A. B.C. D.9.如圖,在三棱錐中,點E在上,滿足,點F為的中點,記分別為,則()A. B.C. D.10.若兩個不同平面,的法向量分別為,,則()A.,相交但不垂直 B.C. D.以上均不正確11.下列拋物線中,以點為焦點的是()A. B.C. D.12.已知橢圓C的焦點為,過F2的直線與C交于A,B兩點.若,,則C的方程為A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知點是拋物線的準(zhǔn)線與x軸的交點,F(xiàn)為拋物線的焦點,P是拋物線上的動點,則最小值為_____14.已知滿足約束條件,則的最小值為___________15.下圖是個幾何體的展開圖,圖①是由個邊長為的正三角形組成;圖②是由四個邊長為的正三角形和一個邊長為的正方形組成;圖③是由個邊長為的正三角形組成;圖④是由個邊長為的正方形組成.若幾何體能夠穿過直徑為的圓,則該幾何體的展開圖可以是______(填所有正確結(jié)論的序號).16.圓關(guān)于直線對稱的圓的方程為______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)公差不為零的等差數(shù)列中,已知其前n項和為,若,且成等比數(shù)列(1)求數(shù)列的通項;(2)當(dāng)時,求數(shù)列的前n和18.(12分)如圖,三棱柱中,底面邊長和側(cè)棱長都等于1,(1)設(shè),,,用向量表示,并求出的長度;(2)求異面直線與所成角的余弦值19.(12分)已知橢圓的一個頂點為,離心率為(1)求橢圓C的方程;(2)若直線l與橢圓C交于M、N兩點,直線BM與直線BN的斜率之積為,證明直線l過定點并求出該定點坐標(biāo)20.(12分)已知函數(shù)的圖像在處的切線斜率為,且時,有極值.(1)求的解析式;(2)求在上的最大值和最小值.21.(12分)已知橢圓的離心率為,點在橢圓上,直線與交于,兩點(1)求橢圓的方程及焦點坐標(biāo);(2)若線段的垂直平分線經(jīng)過點,求的取值范圍22.(10分)已知函數(shù)f(x)=x﹣lnx(1)求曲線y=f(x)在點(1,f(1))處的切線方程;(2)求函數(shù)f(x)的極值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】求出兩圓的圓心與半徑,根據(jù)兩圓的位置關(guān)系的判定即可求解.【詳解】已知圓的圓心到直線的距離,即,解得或,因為,所以,圓的圓心的坐標(biāo)為,半徑,將圓化為標(biāo)準(zhǔn)方程為,其圓心的坐標(biāo)為,半徑,圓心距,兩圓內(nèi)切,故選:B2、A【解析】利用雙曲線漸近線的性質(zhì),結(jié)合一元二次方程根的判別式進行求解即可.【詳解】解:雙曲線的漸近線方程為,右頂點為.①直線與雙曲線只有一個公共點;②過點平行于漸近線時,直線與雙曲線只有一個公共點;③設(shè)過的切線方程為與雙曲線聯(lián)立,可得,由,即,解得,直線的條數(shù)為1.綜上可得,直線的條數(shù)為4.故選:A,.3、B【解析】先按要求分為四組,再四個不同地方,四個組進行全排列.【詳解】兩個組各2人,兩個組各1人,屬于部分平均分組,要除以平均分組的組數(shù)的全排列,故分組方案有種,再將分得的4組,分配到四個不同地方服務(wù),則不同的分配方案有種.故選:B4、A【解析】延長交延長線于N,則選:A.【點睛】涉及兩焦點問題,往往利用橢圓定義進行轉(zhuǎn)化研究,而角平分線性質(zhì)可轉(zhuǎn)化到焦半徑問題,兩者切入點為橢圓定義.5、D【解析】根據(jù)正方體的性質(zhì),在直角△中應(yīng)用等面積法求到直線的距離.【詳解】由正方體的性質(zhì):面,又面,故,直角△中,若到上的高為,∴,而,,,∴.故選:D.6、A【解析】因為,所以曲線在點(1,0)處的切線的斜率為,所以切線方程為,即,選A7、C【解析】根據(jù),可知向量建立方程求解即可.【詳解】由題意根據(jù),可知向量,則有,解得.故選:C8、A【解析】構(gòu)造函數(shù),分析該函數(shù)的定義域與奇偶性,利用導(dǎo)數(shù)分析出函數(shù)在上為增函數(shù),從而可知該函數(shù)在上為減函數(shù),綜合可得出原不等式的解集.【詳解】令,則函數(shù)的定義域為,且,則函數(shù)為偶函數(shù),所以,,當(dāng)時,,所以,函數(shù)在上為增函數(shù),故函數(shù)在上為減函數(shù),由等價于或:當(dāng)時,由可得;當(dāng)時,由可得.綜上所述,不等式的解集為.故選:A.9、B【解析】利用空間向量加減、數(shù)乘的幾何意義,結(jié)合三棱錐用表示出即可.【詳解】由題設(shè),,,,.故選:B10、B【解析】由向量數(shù)量積為0可求.【詳解】∵,,∴,∴,∴,故選:B.11、A【解析】由題意設(shè)出拋物線的方程,再結(jié)合焦點坐標(biāo)即可求出拋物線的方程.【詳解】∵拋物線為,∴可設(shè)拋物線方程為,∴即,∴拋物線方程為,故選:A.12、B【解析】由已知可設(shè),則,得,在中求得,再在中,由余弦定理得,從而可求解.【詳解】法一:如圖,由已知可設(shè),則,由橢圓的定義有.在中,由余弦定理推論得.在中,由余弦定理得,解得所求橢圓方程為,故選B法二:由已知可設(shè),則,由橢圓的定義有.在和中,由余弦定理得,又互補,,兩式消去,得,解得.所求橢圓方程為,故選B【點睛】本題考查橢圓標(biāo)準(zhǔn)方程及其簡單性質(zhì),考查數(shù)形結(jié)合思想、轉(zhuǎn)化與化歸的能力,很好的落實了直觀想象、邏輯推理等數(shù)學(xué)素養(yǎng)二、填空題:本題共4小題,每小題5分,共20分。13、【解析】利用已知條件求出p,設(shè)出P的坐標(biāo),然后求解的表達式,利用基本不等式即可得出結(jié)論【詳解】解:由題意可知:,設(shè)點,P到直線的距離為d,則,所以,當(dāng)且僅當(dāng)x時,的最小值為,此時,故答案為:【點睛】本題考查拋物線的簡單性質(zhì)的應(yīng)用,基本不等式的應(yīng)用,屬于中檔題14、【解析】根據(jù)題意,作出可行域,進而根據(jù)幾何意義求解即可.【詳解】解:作出可行域如圖,將變形為,所以根據(jù)幾何意義,當(dāng)直線過點時,有最小值,所以聯(lián)立方程得,所以的最小值為故答案為:15、①【解析】根據(jù)幾何體展開圖可知①正四面體、②正四棱錐、③正八面體、④正方體,進而求其外接球半徑,并與比較大小,即可確定答案.【詳解】①由題設(shè),幾何體為棱長為的正四面體,該正四面體可放入一個正方體中,且正方體的棱長為,該正四面體的外接球半徑為,滿足要求;②由題設(shè),幾何體為棱長為的正四棱錐,如下圖所示:設(shè),連接,則為、的中點,因為四邊形是邊長為的正方形,則,所以,,所以,,所以,,,所以點為正四棱錐的外接球球心,且該球的半徑為,不滿足要求;③由題設(shè),幾何體為棱長為的正八面體,該正八面體可由兩個共底面,且棱長均為的正四棱錐拼接而成,由②可知,該正八面體的外接球半徑為,不滿足要求;④由題設(shè),幾何體為棱長為的正方體,其外接球半徑為,不滿足要求;故答案為:①.16、【解析】求出圓心關(guān)于直線對稱點,從而求出對稱圓的方程.【詳解】圓心為,半徑為1,設(shè)關(guān)于對稱點為,則,解得:,故對稱點為,故圓關(guān)于直線對稱的圓的方程為.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)根據(jù)等差數(shù)列的性質(zhì),結(jié)合題意,可求得值,根據(jù)成等比數(shù)列,即可求得d值,代入等差數(shù)列通項公式,即可得答案;(2)由(1)可求得,即可得表達式,根據(jù)裂項相消求和法,即可得答案.【小問1詳解】設(shè)等差數(shù)列的公差為,由等差數(shù)列性質(zhì)可得,解得,又成等比數(shù)列,所以,整理得,因為,所以,所以【小問2詳解】由(1)可得,則,所以,所以18、(1);(2)【解析】(1)根據(jù)向量加減法運算法則可得,根據(jù)計算可得的長度;(2)根據(jù)空間向量的夾角公式計算可得結(jié)果.【小問1詳解】,因為,同理可得,所以【小問2詳解】因為,所以,因為,所以所以異面直線與所成角的余弦值為19、(1);(2)答案見解析,直線過定點.【解析】(1)首先根據(jù)頂點為得到,再根據(jù)離心率為得到,從而得到橢圓C的方程.(2)設(shè),,,與橢圓聯(lián)立得到,利用直線BM與直線BN的斜率之積為和根系關(guān)系得到,從而得到直線恒過的定點.【詳解】(1)一個頂點為,故,又,即,所以故橢圓的方程為(2)若直線l的斜率不存在,設(shè),,此時,與題設(shè)矛盾,故直線l斜率必存在設(shè),,,聯(lián)立得,∴,∵,即∴,化為,解得或(舍去),即直線過定點【點睛】方法點睛:定點問題,一般從三個方法把握:(1)從特殊情況開始,求出定點,再證明定點、定值與變量無關(guān);(2)直接推理,計算,在整個過程找到參數(shù)之間的關(guān)系,代入直線,得到定點.20、(1);(2)最大值為,最小值為.【解析】(1)由題得①,②,解方程組即得解;(2)令解得或,再列表得解.【小問1詳解】解:求導(dǎo)得,因為在出的切線斜率為,則,即①因為時,有極值,則.即②由①②聯(lián)立得,所以.【小問2詳解】解:由(1),令解得或,列表如下:極大值極小值所以,在[-3,2]上的最大值為,最小值為.21、(1),(2)【解析】(1)由題意,列出關(guān)于a,b,c的方程組求解即可得答案;(2)設(shè)M(x1,y1),N(x2,y2),線段MN的中點(x0,y0),則,作差可得①,又線段MN的垂直平分線過點A(0,1),則②,聯(lián)立直線MN與橢圓的方程,可得﹣t2+1+4k2>0(*),③,由①②③及(*)式聯(lián)立即可求解【小問1詳解】解:由題意可得,解得,所以橢圓C的方程為,焦點坐標(biāo)為【小問2詳解】解:設(shè)M(x1,y1),N(x2,y2),線段MN的中點(x0,y0),因為,所以,即,所以①,因為線段MN的垂直平分線過點A(0,1),所以,即②,聯(lián)立,得(1+4k2)x2+8ktx+4t2﹣4=0,所以=(8kt)2﹣4(1+4k2)(4t2﹣4)=﹣16t2+16+64k2>0,即﹣t2+1+4k
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 鋼筋運輸途中檢驗合同
- 體育設(shè)施裝卸搬運協(xié)議
- 夜市小吃攤裝修協(xié)議樣本
- 湖北文理學(xué)院理工學(xué)院《中國共產(chǎn)黨歷史重要文獻導(dǎo)讀》2023-2024學(xué)年第一學(xué)期期末試卷
- 湖北鐵道運輸職業(yè)學(xué)院《護理管理學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025年挖掘機銷售與購買合同范本3篇
- 2025年度高速公路標(biāo)線涂料承包合同范本2篇
- 2025年度跨國石油勘探與開發(fā)合同
- 個人租車合同2024年度版:車輛使用期限與租金3篇
- 溫州2025年浙江溫州永嘉縣人民醫(yī)院醫(yī)共體永嘉縣婦幼保健院招聘(一)筆試歷年參考題庫附帶答案詳解
- 蘇北四市(徐州、宿遷、淮安、連云港)2025屆高三第一次調(diào)研考試(一模)語文試卷(含答案)
- 第7課《中華民族一家親》(第一課時)(說課稿)2024-2025學(xué)年統(tǒng)編版道德與法治五年級上冊
- 急診科十大護理課件
- 山東省濟寧市2023-2024學(xué)年高一上學(xué)期1月期末物理試題(解析版)
- GB/T 44888-2024政務(wù)服務(wù)大廳智能化建設(shè)指南
- 2025年上半年河南鄭州滎陽市招聘第二批政務(wù)輔助人員211人筆試重點基礎(chǔ)提升(共500題)附帶答案詳解
- 山東省濟南市歷城區(qū)2024-2025學(xué)年七年級上學(xué)期期末數(shù)學(xué)模擬試題(無答案)
- 國家重點風(fēng)景名勝區(qū)登山健身步道建設(shè)項目可行性研究報告
- 投資計劃書模板計劃方案
- 《接觸網(wǎng)施工》課件 3.4.2 隧道內(nèi)腕臂安裝
- 2024-2025學(xué)年九年級語文上學(xué)期第三次月考模擬卷(統(tǒng)編版)
評論
0/150
提交評論