![會計數(shù)據(jù)分析 Solutions-Manual Chapter-3-EOC-SM-Updated_第1頁](http://file4.renrendoc.com/view9/M00/18/30/wKhkGWch8V2ALJ1VAAKoK4Pv28g036.jpg)
![會計數(shù)據(jù)分析 Solutions-Manual Chapter-3-EOC-SM-Updated_第2頁](http://file4.renrendoc.com/view9/M00/18/30/wKhkGWch8V2ALJ1VAAKoK4Pv28g0362.jpg)
![會計數(shù)據(jù)分析 Solutions-Manual Chapter-3-EOC-SM-Updated_第3頁](http://file4.renrendoc.com/view9/M00/18/30/wKhkGWch8V2ALJ1VAAKoK4Pv28g0363.jpg)
![會計數(shù)據(jù)分析 Solutions-Manual Chapter-3-EOC-SM-Updated_第4頁](http://file4.renrendoc.com/view9/M00/18/30/wKhkGWch8V2ALJ1VAAKoK4Pv28g0364.jpg)
下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
SolutionsManual–Chapter3
SolutionstoDiscussionQuestions
Whatisthedifferencebetweenatargetandaclass?
Atargetisaspecificattributeorvaluethatananalystistryingtoevaluate,suchasaninterestrateorscore.Aclassisacategoryorgroupingthatadataobjectisassignedto,suchasfraudornotfraud.
Whatisthedifferencebetweenasupervisedandanunsupervisedapproach?
Thesupervisedapproachreliesonananalysisofpastdatatopredicttheclassassignmentorregressedvalueforanewunknownobservation.Classificationandregressionarepopularsupervisedmodels.Anunsupervisedapproachisusedtoexploredataanddiscoverpreviously-unknownpatterns.Clusteringandprofilingarecommonunsupervisedmodelsthathelpresearchersidentifygroupsofdatathatmaynotbeobvious.
Whatisthedifferencebetweentrainingdatasetsandtest(ortesting)datasets?
Supervisedmodelsrelyonpreviously-analyzedhistoricaldatatopredictfutureoutcomes.Forexample,anauditormayidentifyfraudulenttransactionsandlabelthoseasfraud.Aportionofthatdataisusedtotrainthemodel,meaningthatatoolanalyzesthehistoricaltrainingdataandtriestoidentifytheattributesthatarethebestpredictorsofaclassorvalue.Oncethemodelhasbeendeveloped,anotherportionofthehistoricaldataisusedtotestthemodeltoseewhichvaluethemodelpredictsforthatdata.Thetoolthencomparesthepredictedvaluesinthetestdatasetstotheactualvaluesinthetestdatasettoevaluatethemodelforaccuracy.Asetofhistoricaldatacanbesplitmanywaysintotrainingandtestingdatasets.
UsingFigure3-5asaguide,whatarethreedataapproachesassociatedwiththesupervisedapproach?
Classification,Causalmodeling,andregression.
UsingFigure3-5asaguide,whatarethreedataapproachesassociatedwiththeunsupervisedapproach?
Profiling,co-occurrencegrouping,andclustering.
Howmightthedatareductionapproachbeusedinauditing?
Onceanauditorhasidentifiedtypesofdatathatarehighrisk(e.g.transactionsonweekends,vendorswithP.O.Boxaddresses)theymayfilterthedatatoshowonlythosetypesoftransactions(basedonthedate,oraddressfieldinthiscase).
Alsomentionedinthechapterarefilteringonsuspiciousvendornames,sequencechecks,andgapdetection.
Howmightclassificationbeusedinapprovingordenyingapotentialfraudulentcreditcardtransaction?
Inthisanalysis,theclassassignedtoaspecificcreditcardtransactionwouldbeeither“fraud”or“notfraud”.Historicalrecordswouldbeassignedoneofthesetwoclasses,basedoncustomerclaims,etc.Aclassificationmodelwouldusepartofthishistoricaldatatotrainamodeltoidentifytheattributesthatarethebestpredictersofafraudulenttransaction.Thentheremainingdatawouldbeusedtovalidatethemodelandtestforaccuracy.
Howissimilaritymatchingdifferentfromclustering?
Similaritymatchinghasaspecificgoalinmind,suchastryingtofindcustomerswhoarelikeyourbestcustomers.Inthiscase,wehaveaspecifictargetandaretryingtolocatesimilarobjects.Clusteringisanattempttofindnaturalgroupingswithoutbeingdrivenbyaspecificpurpose.Clusteringismoreexploratorywheresimilaritymatchingassumesyouknowwhatyou’relookingfor.
Howdoesfuzzymatchwork?Giveanaccountingsituationwhereitmightbemostuseful?
Afuzzymatchusesprobabilitytoshowlikelymatches,basedonhowmuchthetwovalueshaveincommon.Forexample,tworecordsthatcontainaddresseswithsomedefinedpercentageofmatchingcharacterswouldbeconsideredafuzzymatch.Thisallowsauditorstofindrecordsthatapproximateeachotherinthecasewhereanemployeemighttrytoconcealaconnectionbyvaryingthevaluestoavoidexactmatches.
Compareandcontrasttheprofilingdataapproachandthedevelopmentofstandardcostforaunitofproductionatamanufacturingcompany?Aretheysubstantiallythesameordotheyhavedifferences?
Dataprofilingmaybeusedtodetermineproductioncostandvolumebehaviortodetermineabenchmarkforfuturecostandvolume.Thisislikewhatamanagerofamanufacturingcompanydoesindeterminingstandardcostforaunitofproduction.Theyareverysimilarinthatthegoalistocalculateabenchmarkforcontrollingpurposes.
Themaindifferencesisthatdataprofilingcanincorporatealargeramountofdata(suchasmarkettrends,changingfuelprices,orweatherpatterns)toautomaticallygenerateandcontinuallyupdateamoreprecisebenchmark.
Figures3-1through3-4suggestthatvolumeanddistancearethebestpredictorsof“daystoship”forawholesalecompany?Anyothervariablesthatwouldalsobeusefulinpredictingthenumberof“daystoship”?
Answersvary,butsomesuggestedvariablesmightbenumberofemployeesworking,dayoftheweek,logisticscapacity,temperature,etc.
SolutionstoProblems
Relatedpartytransactionsinvolvepeoplewhohaveclosetiestoanorganization,suchasboardmembers.Assumeanaccountingmanagerdecidesthatfuzzymatchingwouldbeausefultechniquetofindundisclosedrelatedpartytransactions.Whatdatawouldthemanagerneedtotestforrelatedpartytransactions?Whatwouldtheprocesslooklike?
Toperformfuzzymatching,themanagerwouldneedalistofrelatedpartiesandtheircontactinformation.Additionally,shewouldneedthecontactinformationforvendorsandcustomersthatparticipateincompanytransactions.
Themanagerwouldjointherelatedpartycontacttablewiththevendorand/orcustomercontactinformation.Sinceitislikelythattheaddresseswillbesimilarbutnotexact,usingthefuzzymatchtoolinExcelorIDEAwouldhavethemanagerselectthesimilarfields,inthiscaseaddressandzipcode.Themanagerwouldthenreviewthetransactionsthatinvolvevendorsorcustomersthatmatchtoseeiftheyarerelatedpartytransactions.
Anauditoristryingtofigureoutiftheinventoryatanelectronicsstorechainisobsolete.Whatcharacteristicsmightbeusedtohelpestablishamodelpredictinginventoryobsolescence?
Answersmayvary.Theauditormaylookatsimplemetricssuchastheageoftheinventory(e.gbasedonpurchasedate),orratios(e.g.turnoverforspecificproducts).Ifthereisarecordofinventorythathasbeendeemedobsoleteinthepast,theauditorsmaybeabletodevelopamodelbasedoncharacteristicsofthoseitems(e.g.size,type,manufacturer).Aclassificationmodelwoulddeterminetheprobabilityofwhichitemsareobsoleteornotobsoleteandcouldbeusedtoevaluateaclient’scompleteinventory.
Anauditoristryingtofigureoutifthegoodwillitsclientrecognizedwhenitpurchasedafactoryhasbecomeimpaired.Whatcharacteristicsmightbeusedtohelpestablishamodelpredictinggoodwillimpairment?
Goodwillimpairmentiscalculatedusingatwo-steptest.Firsttheauditormustdeterminewhetherthegoodwillisimpairedbycomparingthebookvaluewiththefairvalue.Thentheauditormustcalculatetheimpliedfairvalueofgoodwillandcollectevidenceastowhethermanagementrecordedtheimpairment.
Amodelwouldneedtolookatbothquestionsbasedoninput(e.g.accountbalances)fromthegeneralledgeranddeterminantsoffairvalue(e.g.marketdata,assessmentdata).Tocreateatrulypredictivemodel,theauditorwouldcollectdataonimpairmentfromotherclientsandusethoseobservationstobuildamodelthatcouldbeusedtopredictwhetheranewclientisalsoimpaired.
Thisprovidesaninterestingdiscussiononprivacyconcerns.Forexample,wouldaclientbewillingtosharedatathatcouldbeusedtobuildamodelfortheauditors?Mostlikely,no.Couldtheauditorbuildamodeliftheirclienthadmultipleacquireddivisionswithahistoryofimpairment?Probably,yes,buttheremaynotbesufficientobservationstomakeanaccurateenoughprediction.
Howmightclusteringbeusedtoexplaincustomersthatoweusmoney(accountsreceivable)?
Oneformofclusteringthatisalreadyusedforaccountsreceivableistheagingofaccounts.Theaginggroupsaccountsbyhowoldthereceivableis,withtheexpectationthatolderaccountsarelesslikelytobecollected.
Agingreliesononlyonedimension,time,andfocusesonthetransaction,notthecustomer.Clusteringmaybeusefulindeterminingwhethercustomersformnaturalgroupingsrelativetotheirabilitytopaytheirbills,basedoncorrelatedattributes,suchaslocation,size,volumeoforders.
Ifwehavegooddatathatshowswhichcustomershavehadaccountswrittenoff,wemayexpandthismodeltopredictthelikelihoodofnonpaymentbyusingaclassificationmodel.
Whywouldtheuseofdatareductionbeusefultohighlightrelatedpartytransactions(e.g.,CEOhasherownseparatecompanythatthemaincompanydoesbusinesswith)?
Answerswillvary.Datareductioncanbeusedtofiltertransactionsonspecificattributes.Byremovingunrelatedtransactionsfromtheanalysis,managementoranauditorcouldclearlyseethescopeandvolumeoftransactionsandeitheracceptthosewithadisclosureormakearecommendationtoimplementbetterinternalcontrolstopreventthemfromoccurring.
HowcouldXBRLbeusedbyaninvestortodoananalysisoftheindustry’sinventoryturnover?
AssumingXBRLdataisvalidandaccurate,aninvestorwouldidentifyspecificaccounttags(e.g.InventoryNet,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 9 古詩三首《秋夜將曉出籬門迎涼有感》(說課稿)-2024-2025學(xué)年統(tǒng)編版語文五年級下冊
- 6 我們神圣的國土第一課時 (說課稿)- 2024-2025學(xué)年統(tǒng)編版道德與法治五年級上冊001
- Unit 3 After School Activities Let's Check(說課稿)-2023-2024學(xué)年人教新起點(diǎn)版英語三年級下冊
- 2024-2025學(xué)年高中物理 第六章 萬有引力與航天 2 太陽與行星間的引力(1)說課稿 新人教版必修2
- Unit5 Clothes (第六課時)(說課稿)-2024-2025學(xué)年人教新起點(diǎn)版英語三年級上冊001
- 2024年四年級英語上冊 Unit 4 Shopping in the City Lesson 24 Etta's Teddy Bear說課稿 冀教版(三起)
- 3 桂花雨 說課稿-2024-2025學(xué)年語文五年級上冊統(tǒng)編版
- 2025定作合同書范本(帶有仲裁協(xié)議)
- 2025個人工程承包合同書
- 2025北京分公司家庭財產(chǎn)保險條款 合同范本
- 2025年中考英語總復(fù)習(xí):閱讀理解練習(xí)題30篇(含答案解析)
- 陜西省英語中考試卷與參考答案(2024年)
- 中建醫(yī)院幕墻工程專項方案
- 基于OBE理念的世界現(xiàn)代史教學(xué)與學(xué)生歷史思維培養(yǎng)探究
- 施工現(xiàn)場揚(yáng)塵污染治理巡查記錄
- 2024年列車員技能競賽理論考試題庫500題(含答案)
- 中南大學(xué)《藥理學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 《無人機(jī)測繪技術(shù)》項目3任務(wù)2無人機(jī)正射影像數(shù)據(jù)處理
- 《ISO 55013-2024 資產(chǎn)管理-數(shù)據(jù)資產(chǎn)管理指南》專業(yè)解讀和應(yīng)用指導(dǎo)材料(雷澤佳編制-2024B0)-121-240
- 小兒腹瀉課件
- 北京市通州區(qū)市級名校2025屆高一數(shù)學(xué)第一學(xué)期期末考試試題含解析
評論
0/150
提交評論