版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
內(nèi)蒙古翁牛特旗2024年中考四模數(shù)學(xué)試題注意事項(xiàng)1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(共10小題,每小題3分,共30分)1.計算(﹣)﹣1的結(jié)果是()A.﹣ B. C.2 D.﹣22.函數(shù)y=ax2+1與(a≠0)在同一平面直角坐標(biāo)系中的圖象可能是()A. B. C. D.3.已知圓內(nèi)接正三角形的面積為3,則邊心距是()A.2 B.1 C. D.4.的相反數(shù)是()A. B.2 C. D.5.若關(guān)于x的一元二次方程x(x+2)=m總有兩個不相等的實(shí)數(shù)根,則()A.m<﹣1 B.m>1 C.m>﹣1 D.m<16.如圖,在△ABC中,點(diǎn)D是AB邊上的一點(diǎn),若∠ACD=∠B,AD=1,AC=2,△ADC的面積為1,則△BCD的面積為()A.1 B.2 C.3 D.47.如圖,PA、PB切⊙O于A、B兩點(diǎn),AC是⊙O的直徑,∠P=40°,則∠ACB度數(shù)是()A.50° B.60° C.70° D.80°8.已知某幾何體的三視圖(單位:cm)如圖所示,則該幾何體的側(cè)面積等于()A.12πcm2B.15πcm2C.24πcm2D.30πcm29.下列二次根式中,為最簡二次根式的是()A. B. C. D.10.如圖,是的直徑,弦,,,則陰影部分的面積為()A.2π B.π C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.新田為實(shí)現(xiàn)全縣“脫貧摘帽”,2018年2月已統(tǒng)籌整合涉農(nóng)資金235000000元,撬動800000000元金融資本參與全縣脫貧攻堅工作,請將235000000用科學(xué)記數(shù)法表示為___.12.如圖,四邊形ABCD中,點(diǎn)P是對角線BD的中點(diǎn),點(diǎn)E,F(xiàn)分別是AB,CD的中點(diǎn),AD=BC,∠PEF=35°,則∠PFE的度數(shù)是_____.13.觀察下列等式:第1個等式:a1=;第2個等式:a2=;第3個等式:a3=;…請按以上規(guī)律解答下列問題:(1)列出第5個等式:a5=_____;(2)求a1+a2+a3+…+an=,那么n的值為_____.14.因式分解:x2﹣4=.15.已知函數(shù)是關(guān)于的二次函數(shù),則__________.16.如圖,已知點(diǎn)C為反比例函數(shù)上的一點(diǎn),過點(diǎn)C向坐標(biāo)軸引垂線,垂足分別為A、B,那么四邊形AOBC的面積為___________.三、解答題(共8題,共72分)17.(8分)填空并解答:某單位開設(shè)了一個窗口辦理業(yè)務(wù),并按顧客“先到達(dá),先辦理”的方式服務(wù),該窗口每2分鐘服務(wù)一位顧客.已知早上8:00上班窗口開始工作時,已經(jīng)有6位顧客在等待,在窗口工作1分鐘后,又有一位“新顧客”到達(dá),且以后每5分鐘就有一位“新顧客”到達(dá).該單位上午8:00上班,中午11:30下班.(1)問哪一位“新顧客”是第一個不需要排隊的?分析:可設(shè)原有的6為顧客分別為a1、a2、a3、a4、a5、a6,“新顧客”為c1、c2、c3、c4….窗口開始工作記為0時刻.a(chǎn)1a2a3a4a5a6c1c2c3c4…到達(dá)窗口時刻000000161116…服務(wù)開始時刻024681012141618…每人服務(wù)時長2222222222…服務(wù)結(jié)束時刻2468101214161820…根據(jù)上述表格,則第位,“新顧客”是第一個不需要排隊的.(2)若其他條件不變,若窗口每a分鐘辦理一個客戶(a為正整數(shù)),則當(dāng)a最小取什么值時,窗口排隊現(xiàn)象不可能消失.分析:第n個“新顧客”到達(dá)窗口時刻為,第(n﹣1)個“新顧客”服務(wù)結(jié)束的時刻為.18.(8分)如圖,AB是⊙O的直徑,點(diǎn)C是弧AB的中點(diǎn),點(diǎn)D是⊙O外一點(diǎn),AD=AB,AD交⊙O于F,BD交⊙O于E,連接CE交AB于G.(1)證明:∠C=∠D;(2)若∠BEF=140°,求∠C的度數(shù);(3)若EF=2,tanB=3,求CE?CG的值.19.(8分)如圖,在直角三角形ABC中,(1)過點(diǎn)A作AB的垂線與∠B的平分線相交于點(diǎn)D(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法);(2)若∠A=30°,AB=2,則△ABD的面積為.20.(8分)如圖,AD是⊙O的直徑,AB為⊙O的弦,OP⊥AD,OP與AB的延長線交于點(diǎn)P,過B點(diǎn)的切線交OP于點(diǎn)C.求證:∠CBP=∠ADB.若OA=2,AB=1,求線段BP的長.21.(8分)已知四邊形ABCD是⊙O的內(nèi)接四邊形,AC是⊙O的直徑,DE⊥AB,垂足為E(1)延長DE交⊙O于點(diǎn)F,延長DC,F(xiàn)B交于點(diǎn)P,如圖1.求證:PC=PB;(2)過點(diǎn)B作BG⊥AD,垂足為G,BG交DE于點(diǎn)H,且點(diǎn)O和點(diǎn)A都在DE的左側(cè),如圖2.若AB=,DH=1,∠OHD=80°,求∠BDE的大?。?2.(10分)如圖,分別以線段AB兩端點(diǎn)A,B為圓心,以大于AB長為半徑畫弧,兩弧交于C,D兩點(diǎn),作直線CD交AB于點(diǎn)M,DE∥AB,BE∥CD.(1)判斷四邊形ACBD的形狀,并說明理由;(2)求證:ME=AD.23.(12分)經(jīng)過校園某路口的行人,可能左轉(zhuǎn),也可能直行或右轉(zhuǎn).假設(shè)這三種可能性相同,現(xiàn)有小明和小亮兩人經(jīng)過該路口,請用列表法或畫樹狀圖法,求兩人之中至少有一人直行的概率.24.如圖所示,AB是⊙O的一條弦,OD⊥AB,垂足為C,交⊙O于點(diǎn)D,點(diǎn)E在⊙O上.若∠AOD=52°,求∠DEB的度數(shù);若OC=3,OA=5,求AB的長.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】
根據(jù)負(fù)整數(shù)指數(shù)冪與正整數(shù)指數(shù)冪互為倒數(shù),可得答案.【詳解】解:,
故選D.【點(diǎn)睛】本題考查了負(fù)整數(shù)指數(shù)冪,負(fù)整數(shù)指數(shù)冪與正整數(shù)指數(shù)冪互為倒數(shù).2、B【解析】試題分析:分a>0和a<0兩種情況討論:當(dāng)a>0時,y=ax2+1開口向上,頂點(diǎn)坐標(biāo)為(0,1);位于第一、三象限,沒有選項(xiàng)圖象符合;當(dāng)a<0時,y=ax2+1開口向下,頂點(diǎn)坐標(biāo)為(0,1);位于第二、四象限,B選項(xiàng)圖象符合.故選B.考點(diǎn):1.二次函數(shù)和反比例函數(shù)的圖象和性質(zhì);2.分類思想的應(yīng)用.3、B【解析】
根據(jù)題意畫出圖形,連接AO并延長交BC于點(diǎn)D,則AD⊥BC,設(shè)OD=x,由三角形重心的性質(zhì)得AD=3x,利用銳角三角函數(shù)表示出BD的長,由垂徑定理表示出BC的長,然后根據(jù)面積法解答即可.【詳解】如圖,連接AO并延長交BC于點(diǎn)D,則AD⊥BC,設(shè)OD=x,則AD=3x,∵tan∠BAD=,∴BD=tan30°·AD=x,∴BC=2BD=2x,∵,∴×2x×3x=3,∴x=1所以該圓的內(nèi)接正三邊形的邊心距為1,故選B.【點(diǎn)睛】本題考查正多邊形和圓,三角形重心的性質(zhì),垂徑定理,銳角三角函數(shù),面積法求線段的長,解答本題的關(guān)鍵是明確題意,求出相應(yīng)的圖形的邊心距.4、B【解析】
根據(jù)相反數(shù)的性質(zhì)可得結(jié)果.【詳解】因?yàn)?2+2=0,所以﹣2的相反數(shù)是2,故選B.【點(diǎn)睛】本題考查求相反數(shù),熟記相反數(shù)的性質(zhì)是解題的關(guān)鍵.5、C【解析】
將關(guān)于x的一元二次方程化成標(biāo)準(zhǔn)形式,然后利用Δ>0,即得m的取值范圍.【詳解】因?yàn)榉匠淌顷P(guān)于x的一元二次方程方程,所以可得,Δ=4+4m>0,解得m>﹣1,故選D.【點(diǎn)睛】本題熟練掌握一元二次方程的基本概念是本題的解題關(guān)鍵.6、C【解析】
∵∠ACD=∠B,∠A=∠A,∴△ACD∽△ABC,∴,∴,∴,∴S△ABC=4,∴S△BCD=S△ABC-S△ACD=4-1=1.故選C考點(diǎn):相似三角形的判定與性質(zhì).7、C【解析】
連接BC,根據(jù)題意PA,PB是圓的切線以及可得的度數(shù),然后根據(jù),可得的度數(shù),因?yàn)槭菆A的直徑,所以,根據(jù)三角形內(nèi)角和即可求出的度數(shù)?!驹斀狻窟B接BC.∵PA,PB是圓的切線∴在四邊形中,∵∴∵所以∵是直徑∴∴故答案選C.【點(diǎn)睛】本題主要考察切線的性質(zhì),四邊形和三角形的內(nèi)角和以及圓周角定理。8、B【解析】由三視圖可知這個幾何體是圓錐,高是4cm,底面半徑是3cm,所以母線長是(cm),∴側(cè)面積=π×3×5=15π(cm2),故選B.9、B【解析】
最簡二次根式必須滿足以下兩個條件:1.被開方數(shù)的因數(shù)是(整數(shù)),因式是(整式)(分母中不含根號)2.被開方數(shù)中不含能開提盡方的(因數(shù))或(因式).【詳解】A.=3,不是最簡二次根式;B.,最簡二次根式;C.=,不是最簡二次根式;D.=,不是最簡二次根式.故選:B【點(diǎn)睛】本題考核知識點(diǎn):最簡二次根式.解題關(guān)鍵點(diǎn):理解最簡二次根式條件.10、D【解析】分析:連接OD,則根據(jù)垂徑定理可得出CE=DE,繼而將陰影部分的面積轉(zhuǎn)化為扇形OBD的面積,代入扇形的面積公式求解即可.詳解:連接OD,∵CD⊥AB,∴(垂徑定理),故即可得陰影部分的面積等于扇形OBD的面積,又∵∴(圓周角定理),∴OC=2,故S扇形OBD=即陰影部分的面積為.故選D.點(diǎn)睛:考查圓周角定理,垂徑定理,扇形面積的計算,熟記扇形的面積公式是解題的關(guān)鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、2.35×1【解析】
科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點(diǎn)移動了多少位,n的絕對值與小數(shù)點(diǎn)移動的位數(shù)相同.當(dāng)原數(shù)絕對值>1時,n是正數(shù);當(dāng)原數(shù)的絕對值<1時,n是負(fù)數(shù).【詳解】解:將235000000用科學(xué)記數(shù)法表示為:2.35×1.故答案為:2.35×1.【點(diǎn)睛】本題考查科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關(guān)鍵要正確確定a的值以及n的值.12、35°【解析】∵四邊形ABCD中,點(diǎn)P是對角線BD的中點(diǎn),點(diǎn)E,F(xiàn)分別是AB,CD的中點(diǎn),∴PE是△ABD的中位線,PF是△BDC的中位線,∴PE=AD,PF=BC,又∵AD=BC,∴PE=PF,∴∠PFE=∠PEF=35°.故答案為35°.13、49【解析】
(1)觀察等式可得然后根據(jù)此規(guī)律就可解決問題;
(2)只需運(yùn)用以上規(guī)律,采用拆項(xiàng)相消法即可解決問題.【詳解】(1)觀察等式,可得以下規(guī)律:,∴(2)解得:n=49.故答案為:49.【點(diǎn)睛】屬于規(guī)律型:數(shù)字的變化類,觀察題目,找出題目中數(shù)字的變化規(guī)律是解題的關(guān)鍵.14、(x+2)(x-2).【解析】試題分析:直接利用平方差公式分解因式得出x2﹣4=(x+2)(x﹣2).考點(diǎn):因式分解-運(yùn)用公式法15、1【解析】
根據(jù)一元二次方程的定義可得:,且,求解即可得出m的值.【詳解】解:由題意得:,且,解得:,且,∴故答案為:1.【點(diǎn)睛】此題主要考查了一元二次方程的定義,關(guān)鍵是掌握“未知數(shù)的最高次數(shù)是1”且“二次項(xiàng)的系數(shù)不等于0”.16、1【解析】
解:由于點(diǎn)C為反比例函數(shù)上的一點(diǎn),則四邊形AOBC的面積S=|k|=1.故答案為:1.三、解答題(共8題,共72分)17、(1)5;(2)5n﹣4,na+6a.【解析】
(1)第5位,“新顧客”到達(dá)時間是20分鐘,第11位顧客結(jié)束服務(wù)的時間是20分鐘,所以第5位“新顧客”是第一個不需要排隊的;(2)由表格中信息可得,“新顧客”到達(dá)時間為1,6,11,16,…,則第n個“新顧客”到達(dá)窗口時刻為5n﹣4,由表格可知,“新顧客”服務(wù)開始的時間為6a,7a,8a,…,第n﹣1個“新顧客”服務(wù)開始的時間為(6+n﹣1)a=(5+n)a,第n﹣1個“新顧客”服務(wù)結(jié)束的時間為(5+n)a+a=na+6a.【詳解】(1)第5位,“新顧客”到達(dá)時間是20分鐘,第11位顧客結(jié)束服務(wù)的時間是20分鐘,所以第5位“新顧客”是第一個不需要排隊的;故答案為:5;(2)由表格中信息可得,“新顧客”到達(dá)時間為1,6,11,16,…,∴第n個“新顧客”到達(dá)窗口時刻為5n﹣4,由表格可知,“新顧客”服務(wù)開始的時間為6a,7a,8a,…,∴第n個“新顧客”服務(wù)開始的時間為(6+n)a,∴第n﹣1個“新顧客”服務(wù)開始的時間為(6+n﹣1)a=(5+n)a,∵每a分鐘辦理一個客戶,∴第n﹣1個“新顧客”服務(wù)結(jié)束的時間為(5+n)a+a=na+6a,故答案為:5n﹣4,na+6a.【點(diǎn)睛】本題考查了列代數(shù)式,用代數(shù)式表示數(shù)的規(guī)律,解題關(guān)鍵是要讀懂題目的意思,根據(jù)題目給出的條件,尋找規(guī)律,列出代數(shù)式.18、(1)見解析;(2)70°;(3)1.【解析】
(1)先根據(jù)等邊對等角得出∠B=∠D,即可得出結(jié)論;(2)先判斷出∠DFE=∠B,進(jìn)而得出∠D=∠DFE,即可求出∠D=70°,即可得出結(jié)論;(3)先求出BE=EF=2,進(jìn)而求AE=6,即可得出AB,進(jìn)而求出AC,再判斷出△ACG∽△ECA,即可得出結(jié)論.【詳解】(1)∵AB=AD,∴∠B=∠D,∵∠B=∠C,∴∠C=∠D;(2)∵四邊形ABEF是圓內(nèi)接四邊形,∴∠DFE=∠B,由(1)知,∠B=∠D,∴∠D=∠DFE,∵∠BEF=140°=∠D+∠DFE=2∠D,∴∠D=70°,由(1)知,∠C=∠D,∴∠C=70°;(3)如圖,由(2)知,∠D=∠DFE,∴EF=DE,連接AE,OC,∵AB是⊙O的直徑,∴∠AEB=90°,∴BE=DE,∴BE=EF=2,在Rt△ABE中,tanB==3,∴AE=3BE=6,根據(jù)勾股定理得,AB=,∴OA=OC=AB=,∵點(diǎn)C是的中點(diǎn),∴,∴∠AOC=90°,∴AC=OA=2,∵,∴∠CAG=∠CEA,∵∠ACG=∠ECA,∴△ACG∽△ECA,∴,∴CE?CG=AC2=1.【點(diǎn)睛】本題是幾何綜合題,涉及了圓的性質(zhì),圓周角定理,勾股定理,銳角三角函數(shù),相似三角形的判定和性質(zhì),圓內(nèi)接四邊形的性質(zhì),等腰三角形的性質(zhì)等,綜合性較強(qiáng),有一定的難度,熟練掌握和靈活運(yùn)用相關(guān)知識是解題的關(guān)鍵.本題中求出BE=2也是解題的關(guān)鍵.19、(1)見解析(2)【解析】
(1)分別作∠ABC的平分線和過點(diǎn)A作AB的垂線,它們的交點(diǎn)為D點(diǎn);(2)利用角平分線定義得到∠ABD=30°,利用含30度的直角三角形三邊的關(guān)系得到AD=AB=,然后利用三角形面積公式求解.【詳解】解:(1)如圖,點(diǎn)D為所作;(2)∵∠CAB=30°,∴∠ABC=60°.∵BD為角平分線,∴∠ABD=30°.∵DA⊥AB,∴∠DAB=90°.在Rt△ABD中,AD=AB=,∴△ABD的面積=×2×=.故答案為.【點(diǎn)睛】本題考查了作圖﹣復(fù)雜作圖:復(fù)雜作圖是在五種基本作圖的基礎(chǔ)上進(jìn)行作圖,一般是結(jié)合了幾何圖形的性質(zhì)和基本作圖方法.解決此類題目的關(guān)鍵是熟悉基本幾何圖形的性質(zhì),結(jié)合幾何圖形的基本性質(zhì)把復(fù)雜作圖拆解成基本作圖,逐步操作.也考查了三角形面積公式.20、(1)證明見解析;(2)BP=1.【解析】分析:(1)連接OB,如圖,根據(jù)圓周角定理得到∠ABD=90°,再根據(jù)切線的性質(zhì)得到∠OBC=90°,然后利用等量代換進(jìn)行證明;(2)證明△AOP∽△ABD,然后利用相似比求BP的長.詳(1)證明:連接OB,如圖,∵AD是⊙O的直徑,∴∠ABD=90°,∴∠A+∠ADB=90°,∵BC為切線,∴OB⊥BC,∴∠OBC=90°,∴∠OBA+∠CBP=90°,而OA=OB,∴∠A=∠OBA,∴∠CBP=∠ADB;(2)解:∵OP⊥AD,∴∠POA=90°,∴∠P+∠A=90°,∴∠P=∠D,∴△AOP∽△ABD,∴,即,∴BP=1.點(diǎn)睛:本題考查了切線的性質(zhì):圓的切線垂直于經(jīng)過切點(diǎn)的半徑.若出現(xiàn)圓的切線,必連過切點(diǎn)的半徑,構(gòu)造定理圖,得出垂直關(guān)系.也考查了圓周角定理和相似三角形的判定與性質(zhì).21、(1)詳見解析;(2)∠BDE=20°.【解析】
(1)根據(jù)已知條件易證BC∥DF,根據(jù)平行線的性質(zhì)可得∠F=∠PBC;再利用同角的補(bǔ)角相等證得∠F=∠PCB,所以∠PBC=∠PCB,由此即可得出結(jié)論;(2)連接OD,先證明四邊形DHBC是平行四邊形,根據(jù)平行四邊形的性質(zhì)可得BC=DH=1,在Rt△ABC中,用銳角三角函數(shù)求出∠ACB=60°,進(jìn)而判斷出DH=OD,求出∠ODH=20°,再求得∠NOH=∠DOC=40°,根據(jù)三角形外角的性質(zhì)可得∠OAD=∠DOC=20°,最后根據(jù)圓周角定理及平行線的性質(zhì)即可求解.【詳解】(1)如圖1,∵AC是⊙O的直徑,∴∠ABC=90°,∵DE⊥AB,∴∠DEA=90°,∴∠DEA=∠ABC,∴BC∥DF,∴∠F=∠PBC,∵四邊形BCDF是圓內(nèi)接四邊形,∴∠F+∠DCB=180°,∵∠PCB+∠DCB=180°,∴∠F=∠PCB,∴∠PBC=∠PCB,∴PC=PB;(2)如圖2,連接OD,∵AC是⊙O的直徑,∴∠ADC=90°,∵BG⊥AD,∴∠AGB=90°,∴∠ADC=∠AGB,∴BG∥DC,∵BC∥DE,∴四邊形DHBC是平行四邊形,∴BC=DH=1,在Rt△ABC中,AB=,tan∠ACB=,∴∠ACB=60°,∴BC=AC=OD,∴DH=OD,在等腰△DOH中,∠DOH=∠OHD=80°,∴∠ODH=20°,設(shè)DE交AC于N,∵BC∥DE,∴∠ONH=∠ACB=60°,∴∠NOH=180°﹣(∠ONH+∠OHD)=40°,∴∠DOC=∠DOH﹣∠NOH=40°,∵OA=OD,∴∠OAD=∠DOC=20°,∴∠CBD=∠OAD=20°,∵BC∥DE,∴∠BDE=∠CBD=20°.【點(diǎn)睛】本題考查了圓內(nèi)接四邊形的性質(zhì)、圓周角定理、平行四邊形的判定與性質(zhì)、等腰三角形的性質(zhì)等知識點(diǎn),解決第(2)問,作出輔助線,求得∠ODH=20°是解決本題的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度網(wǎng)絡(luò)安全防護(hù)與升級合同升級服務(wù)2篇
- 二零二五版M100燃料油國際貿(mào)易代理合同3篇
- 2025年北師大新版七年級生物下冊月考試卷含答案
- 2025年中圖版必修2地理上冊階段測試試卷含答案
- 2025年度雞糞市場開發(fā)與銷售渠道拓展合同3篇
- 2025年湘師大新版七年級地理下冊月考試卷
- 二零二五年度鉆井工具配件供應(yīng)合同3篇
- 2025年滬教新版必修1物理上冊月考試卷含答案
- 陶瓷除塵過濾膜課程設(shè)計
- 2025年人教五四新版拓展型課程生物上冊階段測試試卷含答案
- 學(xué)校2025年寒假特色實(shí)踐作業(yè)綜合實(shí)踐暨跨學(xué)科作業(yè)設(shè)計活動方案
- 2024數(shù)據(jù)資源采購及運(yùn)營管理合同3篇
- 人教版小學(xué)數(shù)學(xué)一年級上冊20以內(nèi)加減混合口算練習(xí)題全套
- 兒童青少年行為和情緒障礙的護(hù)理
- 自升式塔式起重機(jī)安裝與拆卸施工方案
- 山東省技能大賽青島選拔賽-世賽選拔項(xiàng)目20樣題(數(shù)字建造)
- 人居環(huán)境整治合同書
- 2025屆上海市徐匯、松江、金山區(qū)高一物理第一學(xué)期期末學(xué)業(yè)水平測試試題含解析
- 幼兒園意識形態(tài)風(fēng)險點(diǎn)排查報告
- 實(shí)驗(yàn)室清潔、消毒記錄登記表
- 藥品生產(chǎn)質(zhì)量管理規(guī)范(2010版)(含13個附錄)
評論
0/150
提交評論