




付費(fèi)下載
VIP免費(fèi)下載
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
人教版高中數(shù)學(xué)選修2-2PAGEPAGE1第二章推理與證明2.2直接證明與間接證明2.2.1綜合法和分析法一、基礎(chǔ)達(dá)標(biāo)1.已知a,b,c∈R,那么下列命題中正確的是 ()A.若a>b,則ac2>bc2B.若eq\f(a,c)>eq\f(b,c),則a>bC.若a3>b3且ab<0,則eq\f(1,a)>eq\f(1,b)D.若a2>b2且ab>0,則eq\f(1,a)<eq\f(1,b)[答案]C[解析]對(duì)于A:若c=0,則A不成立,故A錯(cuò);對(duì)于B:若c<0,則B不成立,B錯(cuò);對(duì)于C:若a3>b3且ab<0,則eq\b\lc\{\rc\(\a\vs4\al\co1(a>0,b<0)),所以eq\f(1,a)>eq\f(1,b),故C對(duì);對(duì)于D:若eq\b\lc\{\rc\(\a\vs4\al\co1(a<0,b<0)),則D不成立.2.A、B為△ABC的內(nèi)角,A>B是sinA>sinB的 ()A.充分不必要條件 B.必要不充分條件C.充要條件 D.即不充分也不必要條件[答案]C[解析]由正弦定理eq\f(a,sinA)=eq\f(b,sinB),又A、B為三角形的內(nèi)角,∴sinA>0,sinB>0,∴sinA>sinB?2RsinA>2RsinB?a>b?A>B.3.已知直線l,m,平面α,β,且l⊥α,m?β,給出下列四個(gè)命題:①若α∥β,則l⊥m;②若l⊥m,則α∥β;③若α⊥β,則l⊥m;④若l∥m,則α⊥β.其中正確命題的個(gè)數(shù)是 ()A.1 B.2C.3 D.4[答案]B[解析]若l⊥α,m?β,α∥β,則l⊥β,所以l⊥m,①正確;若l⊥α,m?β,l⊥m,α與β可能相交,②不正確;若l⊥α,m?β,α⊥β,l與m可能平行或異面,③不正確;若l⊥α,m?β,l∥m,則m⊥α,所以α⊥β,④正確.4.設(shè)a,b∈R+,且a≠b,a+b=2,則必有 ()A.1≤ab≤eq\f(a2+b2,2) B.a(chǎn)b<1<eq\f(a2+b2,2)C.a(chǎn)b<eq\f(a2+b2,2)<1 D.eq\f(a2+b2,2)<ab<1[答案]B[解析]因?yàn)閍≠b,故eq\f(a2+b2,2)>ab.又因?yàn)閍+b=2>2eq\r(ab),故ab<1,eq\f(a2+b2,2)=eq\f(a+b2-2ab,2)=2-ab>1,即eq\f(a2+b2,2)>1>ab.5.要證明eq\r(3)+eq\r(7)<2eq\r(5),可選擇的方法有很多,最合理的應(yīng)為_(kāi)_______.[答案]分析法6.設(shè)a=eq\r(2),b=eq\r(7)-eq\r(3),c=eq\r(6)-eq\r(2),則a,b,c的大小關(guān)系為_(kāi)_______.[答案]a>c>b[解析]∵a2-c2=2-(8-4eq\r(3))=4eq\r(3)-6=eq\r(48)-eq\r(36)>0,∴a>c.∵eq\f(c,b)=eq\f(\r(6)-\r(2),\r(7)-\r(3))=eq\f(\r(7)+\r(3),\r(6)+\r(2))>1,∴c>b.7.設(shè)a≥b>0,求證:3a3+2b3≥3a2b+2ab證明法一3a3+2b3-(3a2b+2ab2)=3a2(a-b)+2b2(b-a)=(3a2-2b2)(a因?yàn)閍≥b>0,所以a-b≥0,3a2-2b2>0,從而(3a2-2b2)(a-b)所以3a3+2b3≥3a2b+2ab法二要證3a3+2b3≥3a2b+2ab2,只需證3a2(a-b)-2b2(a-b只需證(3a2-2b2)(a-b)≥0,∵a≥b>0.∴a-b≥0,3a2-2b2>2a2-2b∴上式成立.二、能力提升8.設(shè)0<x<1,則a=eq\r(2)x,b=1+x,c=eq\f(1,1-x)中最大的一個(gè)是 ()A.a(chǎn) B.bC.c D.不能確定[答案]C[解析]∵b-c=(1+x)-eq\f(1,1-x)=eq\f(1-x2-1,1-x)=-eq\f(x2,1-x)<0,∴b<c.又∵b=1+x>eq\r(2)x=a,∴a<b<c.9.已知a,b為非零實(shí)數(shù),則使不等式:eq\f(a,b)+eq\f(b,a)≤-2成立的一個(gè)充分不必要條件是 ()A.a(chǎn)b>0 B.a(chǎn)b<0C.a(chǎn)>0,b<0 D.a(chǎn)>0,b>0[答案]C[解析]∵eq\f(a,b)與eq\f(b,a)同號(hào),由eq\f(a,b)+eq\f(b,a)≤-2,知eq\f(a,b)<0,eq\f(b,a)<0,即ab<0.又若ab<0,則eq\f(a,b)<0,eq\f(b,a)<0.∴eq\f(a,b)+eq\f(b,a)=-eq\b\lc\[\rc\](\a\vs4\al\co1(\b\lc\(\rc\)(\a\vs4\al\co1(-\f(a,b)))+\b\lc\(\rc\)(\a\vs4\al\co1(-\f(b,a)))))≤-2eq\r(\b\lc\(\rc\)(\a\vs4\al\co1(-\f(a,b)))·\b\lc\(\rc\)(\a\vs4\al\co1(-\f(b,a))))=-2,綜上,ab<0是eq\f(a,b)+eq\f(b,a)≤-2成立的充要條件,∴a>0,b<0是eq\f(a,b)+eq\f(b,a)≤-2成立的一個(gè)充分而不必要條件.10.如圖所示,在直四棱柱A1B1C1D1-ABCD中,當(dāng)?shù)酌嫠倪呅蜛BCD滿足條件________時(shí),有A1C⊥B1D1[答案]對(duì)角線互相垂直[解析]本題[答案]不唯一,要證A1C⊥B1D1,只需證B1D1垂直于A1C所在的平面A1CC1,因?yàn)樵撍睦庵鶠橹彼睦庵?,所以B1D1⊥CC1,故只需證B1D1⊥A111.已知a>0,b>0,eq\f(1,b)-eq\f(1,a)>1.求證:eq\r(1+a)>eq\f(1,\r(1-b)).證明要證eq\r(1+a)>eq\f(1,\r(1-b))成立,只需證1+a>eq\f(1,1-b),只需證(1+a)(1-b)>1(1-b>0),即1-b+a-ab>1,∴a-b>ab,只需證:eq\f(a-b,ab)>1,即eq\f(1,b)-eq\f(1,a)>1.由已知a>0,eq\f(1,b)-eq\f(1,a)>1成立,∴eq\r(1+a)>eq\f(1,\r(1-b))成立.12.求證拋物線y2=2px(p>0),以過(guò)焦點(diǎn)的弦為直徑的圓必與x=-eq\f(p,2)相切.證明如圖,作AA′、BB′垂直準(zhǔn)線,取AB的中點(diǎn)M,作MM′垂直準(zhǔn)線.要證明以AB為直徑的圓與準(zhǔn)線相切,只需證|MM′|=eq\f(1,2)|AB|,由拋物線的定義:|AA′|=|AF|,|BB′|=|BF|,所以|AB|=|AA′|+|BB′|,因此只需證|MM′|=eq\f(1,2)(|AA′|+|BB′|)根據(jù)梯形的中位線定理可知上式是成立的.所以以過(guò)焦點(diǎn)的弦為直徑的圓必與x=-eq\f(p,2)相切.三、探究與創(chuàng)新13.(2013·廣東)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,已知a1=1,eq\f(2Sn,n)=an+1-eq\f(1,3)n2-n-eq\f(2,3),n∈N*.(1)求a2的值;(2)求數(shù)列{an}的通項(xiàng)公式;(3)證明:對(duì)一切正整數(shù)n,有eq\f(1,a1)+eq\f(1,a2)+…+eq\f(1,an)<eq\f(7,4).(1)解當(dāng)n=1時(shí),eq\f(2S1,1)=2a1=a2-eq\f(1,3)-1-eq\f(2,3)=2,解得a2=4.(2)解2Sn=nan+1-eq\f(1,3)n3-n2-eq\f(2,3)n ①當(dāng)n≥2時(shí),2Sn-1=(n-1)an-eq\f(1,3)(n-1)3-(n-1)2-eq\f(2,3)(n-1) ②①-②得2an=nan+1-(n-1)an-n2-n整理得nan+1=(n+1)an+n(n+1),即eq\f(an+1,n+1)=eq\f(an,n)+1,eq\f(an+1,n+1)-eq\f(an,n)=1,當(dāng)n=1時(shí),eq\f(a2,2)-eq\f(a1,1)=2-1=1.所以數(shù)列eq\b\lc\{\rc\}(\a\vs4\al\co1(\f(an,n)))是以1為首項(xiàng),1為公差的等差數(shù)列.所以eq\f(an,n)=n,即an=n2.所以數(shù)列{an}的通項(xiàng)公式為an=n2,n∈N*.(3)證明因?yàn)閑q\f(1,an)=eq\f(1,n2)<eq\f(1,n-1n)=eq\f(1,n-1)-eq\f(1,n)(n≥2),所以eq\f(1,a1)+eq\f(1,a2)+…+eq\f(1,an)=eq\f(1,12)+eq\f(1,22)+eq\f(1,32)+…+eq\f(1,n2)<1+eq\f(1,4)+eq\b\lc\(\rc\)(
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 安全教育培訓(xùn)試題及答案
- 烏蘇市保安考試題及答案
- 工廠包貨車運(yùn)輸協(xié)議
- 一年級(jí)體育教學(xué)工作計(jì)劃(33篇)
- 2025二手房屋買賣合同官方版空白
- 彩票站與體育賽事合作推廣協(xié)議
- 臨時(shí)用地拆遷補(bǔ)償協(xié)議書
- 餐飲食品安全管理體系建設(shè)與監(jiān)督協(xié)議
- 影視制作現(xiàn)場(chǎng)場(chǎng)記職務(wù)聘用協(xié)議
- 餐飲店股東聯(lián)合投資餐飲項(xiàng)目合作協(xié)議
- 《棉鈴蟲的習(xí)性》課件
- 化妝品行業(yè)智能化護(hù)膚與體驗(yàn)方案
- 市政道路提升改造工程投標(biāo)文件(技術(shù)方案)
- 安規(guī)考試題庫(kù)(含參考答案)
- 2024秋國(guó)開(kāi)《職場(chǎng)寫作》形考作業(yè)1-4參考答案
- TSG ZF001-2006《安全閥安全技術(shù)監(jiān)察規(guī)程》
- 2025年遼寧省高考生物學(xué)試卷與參考答案
- 12D401-3 爆炸危險(xiǎn)環(huán)境電氣線路和電氣設(shè)備安裝
- 公裝行業(yè)市場(chǎng)分析報(bào)告2024年
- DL∕ T 1163-2012 隱極發(fā)電機(jī)在線監(jiān)測(cè)裝置配置導(dǎo)則
- DL∕ T 942-2005 直吹式制粉系統(tǒng)的煤粉取樣方法
評(píng)論
0/150
提交評(píng)論