黑龍江省哈爾濱市第十九中學2025屆數(shù)學高一上期末調研試題含解析_第1頁
黑龍江省哈爾濱市第十九中學2025屆數(shù)學高一上期末調研試題含解析_第2頁
黑龍江省哈爾濱市第十九中學2025屆數(shù)學高一上期末調研試題含解析_第3頁
黑龍江省哈爾濱市第十九中學2025屆數(shù)學高一上期末調研試題含解析_第4頁
黑龍江省哈爾濱市第十九中學2025屆數(shù)學高一上期末調研試題含解析_第5頁
已閱讀5頁,還剩7頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

黑龍江省哈爾濱市第十九中學2025屆數(shù)學高一上期末調研試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知函數(shù),則()A. B.3C. D.2.在平行四邊形ABCD中,E是CD中點,F(xiàn)是BE中點,若+=m+n,則()A., B.,C., D.,3.如圖,四棱錐的底面為正方形,底面,則下列結論中不正確的是A.B.平面C.平面平面D.與所成的角等于與所成的角4.若函數(shù)的三個零點分別是,且,則()A. B.C. D.5.已知函數(shù)與的圖象關于軸對稱,當函數(shù)和在區(qū)間同時遞增或同時遞減時,把區(qū)間叫做函數(shù)的“不動區(qū)間”.若區(qū)間為函數(shù)的“不動區(qū)間”,則實數(shù)的取值范圍是A. B.C. D.6.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,φ∈R).則“f(x)是偶函數(shù)“是“A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件7.若函數(shù)的圖象如圖所示,則下列函數(shù)與其圖象相符的是A. B.C. D.8.“四邊形是菱形”是“四邊形是平行四邊形”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件9.已知,則a,b,c的大小關系為()A.a<b<c B.c<a<bC.a<c<b D.c<b<a10.設全集,則圖中陰影部分所表示的集合是A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.若,則________.12.已知為第四象限的角,,則________.13.若函數(shù)部分圖象如圖所示,則此函數(shù)的解析式為______.14.經(jīng)過點P(3,2),且在兩坐標軸上的截距相等的直線方程為(寫出一般式)___15.如圖1,正方形ABCD的邊長為2,點M為線段CD的中點.現(xiàn)把正方形紙按照圖2進行折疊,使點A與點M重合,折痕與AD交于點E,與BC交于點F.記,則_______.16.全集,集合,則______三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知函數(shù).(1)若,解不等式;(2)解關于x的不等式.18.已知函數(shù).(1)當時,求函數(shù)的值域;(2)若函數(shù)的值域為R,求實數(shù)取值范圍.19.已知且,求使不等式恒成立的實數(shù)m的取值范圍20.已知角的頂點在坐標原點,始邊與x軸非負半軸重合,終邊經(jīng)過點.(1)求的值;(2)求的值.21.袋中有五張卡片,其中紅色卡片三張,標號分別為1,2,3;藍色卡片兩張,標號分別為1,2.(Ⅰ)從以上五張卡片中任取兩張,求這兩張卡片顏色不同且標號之和小于4的概率;(Ⅱ)現(xiàn)袋中再放入一張標號為0的綠色卡片,從這六張卡片中任取兩張,求這兩張卡片顏色不同且標號之和小于4的概率.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】根據(jù)分段函數(shù)的解析式,令代入先求出,進而可求出的結果.【詳解】解:,則令,得,所以.故選:D.2、B【解析】通過向量之間的關系將轉化到平行四邊形邊上即可【詳解】由題意可得,同理:,所以所以,故選B.【點睛】本題考查向量的線性運算,重點利用向量的加減進行轉化,同時,利用向量平行進行代換3、D【解析】結合直線與平面垂直判定和性質,結合直線與平面平行的判定,即可【詳解】A選項,可知可知,故,正確;B選項,AB平行CD,故正確;C選項,,故平面平面,正確;D選項,AB與SC所成的角為,而DC與SA所成的角為,故錯誤,故選D【點睛】考查了直線與平面垂直的判定和性質,考查了直線與平面平行的判定,考查了異面直線所成角,難度中等4、D【解析】利用函數(shù)的零點列出方程,再結合,得出關于的不等式,解之可得選項【詳解】因為函數(shù)的三個零點分別是,且,所以,,解得,所以函數(shù),所以,又,所以,故選:D【點睛】關鍵點睛:本題考查函數(shù)的零點與方程的根的關系,關鍵在于準確地運用零點存在定理5、C【解析】若區(qū)間[1,2]為函數(shù)f(x)=|2x﹣t|的“不動區(qū)間”,則函數(shù)f(x)=|2x﹣t|和函數(shù)F(x)=|﹣t|在[1,2]上單調性相同,則(2x﹣t)(2﹣x﹣t)≤0在[1,2]上恒成立,進而得到答案【詳解】∵函數(shù)y=f(x)與y=F(x)的圖象關于y軸對稱,∴F(x)=f(﹣x)=|2﹣x﹣t|,∵區(qū)間[1,2]為函數(shù)f(x)=|2x﹣t|的“不動區(qū)間”,∴函數(shù)f(x)=|2x﹣t|和函數(shù)F(x)=|2﹣x﹣t|在[1,2]上單調性相同,∵y=2x﹣t和函數(shù)y=2﹣x﹣t的單調性相反,∴(2x﹣t)(2﹣x﹣t)≤0在[1,2]上恒成立,即1﹣t(2x+2﹣x)+t2≤0在[1,2]上恒成立,即2﹣x≤t≤2x在[1,2]上恒成立,即≤t≤2,故答案為:C【點睛】(1)本題主要考查不動點定義及利用定義解答數(shù)學問題的能力,考查指數(shù)函數(shù)的圖像和性質,考查不等式的恒成立問題,意在考查學生對這些知識的掌握水平和分析推理能力.(2)正確理解不動區(qū)間的定義,得到(2x﹣t)(2﹣x﹣t)≤0在[1,2]上恒成立,是解答的關鍵6、B【解析】利用必要不充分條件的概念,結合三角函數(shù)知識可得答案.【詳解】若φ=π2,則f(x)=Asin(ωx+π若f(x)=Asin(ωx+φ)為偶函數(shù),則φ=kπ+π2,k∈Z,所以“f(x)是偶函數(shù)“是“φ=π故選:B【點睛】關鍵點點睛:掌握必要不充分條件的概念是解題關鍵.7、B【解析】由函數(shù)的圖象可知,函數(shù),則下圖中對于選項A,是減函數(shù),所以A錯誤;對于選項B,的圖象是正確的;對C,是減函數(shù),故C錯;對D,函數(shù)是減函數(shù),故D錯誤。故選B8、A【解析】由菱形和平行四邊形的定義可判斷.【詳解】解:四邊形是菱形則四邊形是平行四邊形,反之,若四邊形是平行四邊形則四邊形不一定是菱形,所以“四邊形是菱形”是“四邊形是平行四邊形”充分不必要條件.故選:A.9、B【解析】結合指數(shù)函數(shù)、冪函數(shù)的單調性確定正確選項.【詳解】在上遞增,在上遞增..故選:B10、D【解析】陰影部分表示的集合為在集合N中去掉集合M,N的交集,即得解.【詳解】由維恩圖可知,陰影部分表示的集合為在集合N中去掉集合M,N的交集,由題得,所以陰影部分表示的集合為.故選:D【點睛】本題主要考查維恩圖,考查集合的運算,意在考查學生對這些知識的理解掌握水平,屬于基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】利用三角函數(shù)的誘導公式,化簡得到原式,代入即可求解.【詳解】因為,由故答案為:12、【解析】給兩邊平方先求出,然后利用完全平方公式求出,再利用公式可得結果.【詳解】∵,兩邊平方得:,∴,∴,∵為第四象限角,∴,,∴,∴.故答案為:【點睛】此題考查的是同角三角函數(shù)的關系和二倍角公式,屬于基礎題.13、.【解析】由周期公式可得,代入點解三角方程可得值,進而可得解析式.【詳解】由題意,周期,解得,所以函數(shù),又圖象過點,所以,得,又,所以,故函數(shù)的解析式為.故答案為:.【點睛】本題考查三角函數(shù)解析式的求解,涉及系數(shù)的意義,屬于基礎題.14、x+y-5=0或2x-3y=0【解析】當直線經(jīng)過原點時,在兩坐標軸上的截距相等,可得其方程為2x﹣3y=0;當直線不經(jīng)過原點時,可得它的斜率為﹣1,由此設出直線方程并代入P的坐標,可求出其方程為x+y﹣5=0,最后加以綜合即可得到答案【詳解】當直線經(jīng)過原點時,設方程為y=kx,∵直線經(jīng)過點P(3,2),∴2=3k,解之得k,此時的直線方程為yx,即2x﹣3y=0;當直線不經(jīng)過原點時,設方程為x+y+c=0,將點P(3,2)代入,得3+2+c=0,解之得c=﹣5,此時的直線方程為x+y﹣5=0綜上所述,滿足條件的直線方程為:2x﹣3y=0或x+y﹣5=0故答案為:x+y-5=0或2x-3y=0【點睛】本題給出直線經(jīng)過定點且在兩個軸上的截距相等,求直線的方程.著重考查了直線的基本量與基本形式等知識,屬于基礎題15、【解析】設,則,利用勾股定理求得,進而得出,根據(jù)正弦函數(shù)的定義求出,由誘導公式求出,結合同角的三角函數(shù)關系和兩角和的正弦公式計算即可.【詳解】設,則,在中,,所以,即,解得,所以,所以在中,,則,又,所以.故答案為:16、【解析】直接利用補集的定義求解【詳解】因為全集,集合,所以,故答案為:三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2)答案見解析【解析】(1)由拋物線開口向上,且其兩個零點為,,可得不等式的解集.(2)由對應的二次方程的判別式,其兩根為,.討論時,時,時,其兩根的大小,由此可得不等式的解集.【詳解】解:(1)當時,不等式可化為,又由,得,.因為拋物線開口向上,且其兩個零點為,,所以不等式的解集為.(2)對于二次函數(shù),其對應的二次方程的判別式,其兩根為,.當,即時,不等式的解集為;當,即時,不等式的解集為;當,即時,不等式的解集為;綜上,時,不等式的解集為;時,不等式無解;時,不等式的解集為.18、(1);(2).【解析】(1)當時,,利用二次函數(shù)的性質求出真數(shù)部分的范圍,根據(jù)對數(shù)函數(shù)的單調性可求出值域;(2)的值域為等價于的值域包含,故,即求.小問1詳解】當時,,∵,∴,∴函數(shù)的值域;【小問2詳解】要使函數(shù)的值域為R,則的值域包含,∴,解得或,∴實數(shù)取值范圍為.19、.【解析】要使不等式恒成立,只需求的最小值,將展開利用基本不等式可求解.【詳解】由,則當且僅當即時取到最小值16若恒成立,則點睛】本題考查不等式恒成立問題,考查利用基本不等式求最值問題,屬于基礎題.20、(1);(2)8.【解析】(1)根據(jù)三角函數(shù)的定義即可求得答案;(2)根據(jù)三角函數(shù)的定義求出,然后用誘導公式將原式化簡,進而進行弦化切,最后求出答案.【小問1詳解】由題意,,所以.【小問2詳解】由題意,,則原式.21、(I).(II)【解析】解:(I)從五張卡片中任取兩張的所有可能情況有如下10

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論