版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025屆浙江省溫州市十五校聯(lián)合體高一上數(shù)學期末教學質(zhì)量檢測模擬試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.下列各組函數(shù)表示同一函數(shù)的是()A., B.,C., D.,2.設(shè)函數(shù)若任意給定的,都存在唯一的非零實數(shù)滿足,則正實數(shù)的取值范圍為()A. B.C. D.3.已知函數(shù)的上單調(diào)遞減,則的取值范圍是()A. B.C. D.4.已知角的終邊上一點,且,則()A. B.C. D.5.方程的零點所在的區(qū)間為()A. B.C. D.6.根據(jù)表格中的數(shù)據(jù)可以判定方程的一個根所在的區(qū)間為()1234500.6931.0991.3861.60910123A. B.C. D.7.冪函數(shù)圖象經(jīng)過點,則的值為()A. B.C. D.8.已知函數(shù),若,則函數(shù)的單調(diào)遞減區(qū)間是A. B.C. D.9.已知函數(shù),記,,,則,,的大小關(guān)系為()A. B.C. D.10.邊長為的正四面體的表面積是A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知則_______.12.以A(1,1),B(3,2),C(5,4)為頂點的△ABC,其邊AB上的高所在的直線方程是________.13.函數(shù)在區(qū)間上的值域是_____.14.函數(shù)的值域為_____________15.已知角的頂點為坐標原點,始邊為軸的正半軸,終邊經(jīng)過點,則___________.16.已知向量、滿足:,,,則_________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知平面直角坐標系中,,,Ⅰ若三點共線,求實數(shù)的值;Ⅱ若,求實數(shù)的值;Ⅲ若是銳角,求實數(shù)的取值范圍18.(1)已知,求最大值(2)已知且,求的最小值19.已知圓C過點,且與圓M:關(guān)于直線對稱求圓C的方程;過點P作兩條相異直線分別與圓C相交于點A和點B,且直線PA和直線PB的傾斜角互補,O為坐標原點,試判斷直線OP和AB是否平行?請說明理由20.已知,,全集.(1)求和;(2)已知非空集合,若,求實數(shù)的取值范圍.21.已知函數(shù)(1)求函數(shù)的對稱中心;(2)當時,求函數(shù)的值域
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】根據(jù)相同函數(shù)的定義,分別判斷各個選項函數(shù)的定義域和對應(yīng)關(guān)系是否都相同,即可得出答案.【詳解】解:對于A,兩個函數(shù)的定義域都是,,對應(yīng)關(guān)系完全一致,所以兩函數(shù)是相同函數(shù),故A符合題意;對于B,函數(shù)的定義域為,函數(shù)的定義域為,故兩函數(shù)不是相同函數(shù),故B不符題意;對于C,函數(shù)的定義域為,函數(shù)的定義域為,故兩函數(shù)不是相同函數(shù),故C不符題意;對于D,函數(shù)的定義域為,函數(shù)的定義域為,故兩函數(shù)不是相同函數(shù),故D不符題意.故選:A.2、A【解析】結(jié)合函數(shù)的圖象及值域分析,當時,存在唯一的非零實數(shù)滿足,然后利用一元二次不等式的性質(zhì)即可得結(jié)論.【詳解】解:因為,所以由函數(shù)的圖象可知其值域為,又時,值域為;時,值域為,所以的值域為時有兩個解,令,則,若存在唯一的非零實數(shù)滿足,則當時,,與一一對應(yīng),要使也一一對應(yīng),則,,任意,即,因為,所以不等式等價于,即,因,所以,所以,又,所以正實數(shù)的取值范圍為.故選:A.3、C【解析】利用二次函數(shù)的圖象與性質(zhì)得,二次函數(shù)f(x)在其對稱軸左側(cè)的圖象下降,由此得到關(guān)于a的不等關(guān)系,從而得到實數(shù)a的取值范圍【詳解】當時,,顯然適合題意,當時,,解得:,綜上:的取值范圍是故選:C【點睛】本小題主要考查函數(shù)單調(diào)性的應(yīng)用、二次函數(shù)的性質(zhì)、不等式的解法等基礎(chǔ)知識,考查運算求解能力,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想.屬于基礎(chǔ)題4、B【解析】由三角函數(shù)的定義可列方程解出,需注意的范圍【詳解】由三角函數(shù)定義,解得,由,知,則.故選:B.5、C【解析】分析函數(shù)的單調(diào)性,利用零點存在定理可得出結(jié)論.【詳解】因為函數(shù)、均為上的增函數(shù),故函數(shù)在上也為增函數(shù),因為,,,,由零點存在定理可知,函數(shù)的零點所在的區(qū)間為.故選:C.6、C【解析】令,由表中數(shù)據(jù)結(jié)合零點存在性定理即可得解.【詳解】令,由表格數(shù)據(jù)可得.由零點存在性定理可知,在區(qū)間內(nèi)必有零點.故選C.【點睛】本題主要考查了零點存在性定理,屬于基礎(chǔ)題.7、D【解析】設(shè),由點冪函數(shù)上求出參數(shù)n,即可得函數(shù)解析式,進而求.【詳解】設(shè),又在圖象上,則,可得,所以,則.故選:D8、D【解析】由判斷取值范圍,再由復(fù)合函數(shù)單調(diào)性的原則求得函數(shù)的單調(diào)遞減區(qū)間【詳解】,所以,則為單調(diào)增函數(shù),又因為在上單調(diào)遞減,在上單調(diào)遞增,所以的單調(diào)減區(qū)間為,選擇D【點睛】復(fù)合函數(shù)的單調(diào)性判斷遵循“同增異減”的原則,所以需先判斷構(gòu)成復(fù)合函數(shù)的兩個函數(shù)的單調(diào)性,再判斷原函數(shù)的單調(diào)性9、C【解析】根據(jù)題意得在上單調(diào)遞增,,進而根據(jù)函數(shù)的單調(diào)性比較大小即可.【詳解】解:因為函數(shù)定義域為,,故函數(shù)為奇函數(shù),因為在上單調(diào)遞增,在上單調(diào)遞減,所以在上單調(diào)遞增,因為,所以,所以,故選:C.10、D【解析】∵邊長為a的正四面體的表面為4個邊長為a正三角形,∴表面積為:4×a=a2,故選D二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】因為,所以12、2x+y-14=0【解析】求出直線AB的斜率,即可得出高的斜率,由點斜式即可求出.【詳解】由A,B兩點得,則邊AB上的高所在直線的斜率為-2,故所求直線方程是y-4=-2(x-5),即2x+y-14=0.故答案為:2x+y-14=0.13、【解析】結(jié)合的單調(diào)性求得正確答案.【詳解】根據(jù)復(fù)合函數(shù)單調(diào)性同增異減可知:在區(qū)間上遞增,最小值為,最大值為,所以函數(shù)在區(qū)間上的值域是.故答案為:14、【解析】利用二倍角余弦公式可得令,結(jié)合二次函數(shù)的圖象與性質(zhì)得到結(jié)果.【詳解】由題意得:令,則∵在上單調(diào)遞減,∴的值域為:故答案為:【點睛】本題給出含有三角函數(shù)式的“類二次”函數(shù),求函數(shù)的值域.著重考查了三角函數(shù)的最值和二次函數(shù)在閉區(qū)間上的值域等知識,屬于中檔題15、【解析】利用三角函數(shù)定義求出、的值,結(jié)合誘導(dǎo)公式可求得所求代數(shù)式的值.【詳解】由三角函數(shù)的定義可得,,因此,.故答案為:.16、.【解析】將等式兩邊平方得出的值,再利用結(jié)合平面向量的數(shù)量積運算律可得出結(jié)果.【詳解】,,,因此,,故答案為.【點睛】本題考查利用平面向量數(shù)量積來計算平面向量的模,在計算時,一般將平面向量的模平方,利用平面向量數(shù)量積的運算律來進行計算,考查運算求解能力,屬于中等題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ)-2;(Ⅱ);(Ⅲ),且【解析】Ⅰ根據(jù)三點共線,即可得出,并求出,從而得出,求出;Ⅱ根據(jù)即可得出,進行數(shù)量積的坐標運算即可求出的值;Ⅲ根據(jù)是銳角即可得出,并且不共線,可求出,從而得出,且,解出的范圍即可【詳解】Ⅰ,B,P三點共線;;;;;Ⅱ;;;Ⅲ若是銳角,則,且不共線;;,且;解得,且;實數(shù)的取值范圍為,且【點睛】本題主要考查向量平行時的坐標關(guān)系,向量平行的定義,以及向量垂直的充要條件,向量數(shù)量積的坐標運算,屬于中檔題.利用向量的位置關(guān)系求參數(shù)是出題的熱點,主要命題方式有兩個:(1)兩向量平行,利用解答;(2)兩向量垂直,利用解答.18、(1)1;(2)2【解析】(1)由基本不等式求出最小值后可得所求最大值(2)湊出積為定值后由基本不等式求得最小值【詳解】(1),則,,當且僅當,即時等號成立.所以的最大值為1(2)因為且,所以,當且僅當,即時等號成立.所以所求最小值為219、(1)(2)直線AB和OP一定平行.證明見解析【解析】由已知中圓C過點,且圓M:關(guān)于直線對稱,可以求出圓心坐標,即可求出圓C的方程;由已知可得直線PA和直線PB的斜率存在,且互為相反數(shù),設(shè)PA:,PB:,求出A,B坐標后,代入斜率公式,判斷直線OP和AB斜率是否相等,即可得到答案【詳解】由題意可得點C和點關(guān)于直線對稱,且圓C和圓M的半徑相等,都等于r設(shè),由且,解得:,故原C的方程為再把點代入圓C的方程,求得故圓的方程為:;證明:過點P作兩條相異直線分別與圓C相交于A,B,且直線PA和直線PB的傾斜角互補,O為坐標原點,則得直線OP和AB平行,理由如下:由題意知,直線PA和直線PB斜率存在,且互為相反數(shù),故可設(shè)PA:,PB:由,得,因為的橫坐標一定是該方程的解,,同理可得由于AB的斜率的斜率,所以直線AB和OP一定平行【點睛】本題主要考查了直線和圓的方程的應(yīng)用,關(guān)于直線對稱的圓的方程,其中根據(jù)已知條件求出圓C的方程是解答本題的關(guān)鍵,考查推理與運算能力,屬于中檔題20、(1)(2)【解析】(1)求得集合,根據(jù)集合的交集、并集和補集的運算,即可求解;(2)由,所以,結(jié)合集合的包含關(guān)系,即可求解.【詳解】(1)由題意,集合,因為集合,則,所以,.(2)由題意,因為,所以,又因為,,所以,即實數(shù)的取值范圍為.【點睛】本題主要考查了集合的交集、并集和補集的運算,以及
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 補腦產(chǎn)品宣傳課程設(shè)計
- 2025年服裝銷售工作計劃范文(2篇)
- 軟件課程設(shè)計日志
- 課程設(shè)計水果攪拌機
- 二零二五年度建筑廢棄物資源化利用施工總承包管理服務(wù)合同范本3篇
- 公司執(zhí)業(yè)質(zhì)量管理制度范文(2篇)
- 2025年播音部工作計劃范例(2篇)
- 2025年度汽車修理廠與汽車后市場平臺合作服務(wù)合同3篇
- 機械設(shè)備安全裝置檢查維修保養(yǎng)制度模版(3篇)
- 中小學績效工資制度范文(2篇)
- DB4511T 0002-2023 瓶裝液化石油氣充裝、配送安全管理規(guī)范
- 《肝衰竭診治指南(2024版)》解讀
- 2025年集體經(jīng)濟發(fā)展計劃
- 房地產(chǎn)銷售主管崗位招聘筆試題及解答(某大型央企)2024年
- 足球D級教練員培訓(xùn)匯報
- 巖溶區(qū)水文地質(zhì)參數(shù)研究-洞察分析
- 大學體育與健康 教案全套 體育舞蹈 第1-16周
- 一年級數(shù)學練習題-20以內(nèi)加減法口算題(4000道)直接打印版
- 施工作業(yè)安全管理規(guī)定(4篇)
- 浙江省金華市(2024年-2025年小學五年級語文)人教版質(zhì)量測試((上下)學期)試卷及答案
- 傳媒行業(yè)突發(fā)事件應(yīng)急預(yù)案
評論
0/150
提交評論