2025屆江蘇省蔣王中學高一數(shù)學第一學期期末教學質(zhì)量檢測試題含解析_第1頁
2025屆江蘇省蔣王中學高一數(shù)學第一學期期末教學質(zhì)量檢測試題含解析_第2頁
2025屆江蘇省蔣王中學高一數(shù)學第一學期期末教學質(zhì)量檢測試題含解析_第3頁
2025屆江蘇省蔣王中學高一數(shù)學第一學期期末教學質(zhì)量檢測試題含解析_第4頁
2025屆江蘇省蔣王中學高一數(shù)學第一學期期末教學質(zhì)量檢測試題含解析_第5頁
已閱讀5頁,還剩9頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

2025屆江蘇省蔣王中學高一數(shù)學第一學期期末教學質(zhì)量檢測試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知向量,若與垂直,則的值等于A. B.C.6 D.22.A B.C.1 D.3.計算的值為A. B.C. D.4.如圖是函數(shù)的部分圖象,則下列說法正確的是()A. B.C. D.5.已知集合0,,1,,則A. B.1,C.0,1, D.6.已知函數(shù),且,則A.3 B.C.9 D.7.某四棱錐的三視圖如圖所示,則該四棱錐的最長的棱長度為()A. B.C. D.8.如圖的曲線就像橫放的葫蘆的軸截面的邊緣線,我們叫葫蘆曲線(也像湖面上高低起伏的小島在水中的倒影與自身形成的圖形,也可以形象地稱它為倒影曲線),它對應的方程為(其中記為不超過的最大整數(shù)),且過點,若葫蘆曲線上一點到軸的距離為,則點到軸的距離為()A. B.C. D.9.的值為()A. B.C. D.10.若冪函數(shù)的圖象過點,則它的單調(diào)遞增區(qū)間是()A.(0,+∞) B.[0,+∞)C.(-∞,+∞) D.(-∞,0)二、填空題:本大題共6小題,每小題5分,共30分。11.已知集合,,則集合中的元素個數(shù)為___________.12.已知函數(shù),若存在,使得f()=g(),則實數(shù)a的取值范圍為___13.已知直線經(jīng)過點,且與直線平行,則直線的方程為__________14.函數(shù)在區(qū)間上的值域是_____.15.已知函數(shù),且,則__________16.已知函數(shù),若,則___________;若存在,滿足,則的取值范圍是___________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知圓和定點,由圓外一動點向圓引切線,切點為,且滿足.(1)求證:動點在定直線上;(2)求線段長的最小值并寫出此時點的坐標.18.已知函數(shù)的圖象過點,且相鄰的兩個零點之差的絕對值為6(1)求的解析式;(2)將的圖象向右平移3個單位后得到函數(shù)的圖象若關于x的方程在上有解,求實數(shù)a的取值范圍.19.已知,,,,求.20.定義在上的函數(shù),如果滿足:對任意,存在常數(shù),都有成立,則稱是上的有界函數(shù),其中稱函數(shù)的一個上界.已知函數(shù),.(1)若函數(shù)為奇函數(shù),求實數(shù)的值;(2)在第(1)的條件下,求函數(shù)在區(qū)間上的所有上界構(gòu)成的集合;(3)若函數(shù)在上是以3為上界的有界函數(shù),求實數(shù)的取值范圍.21.已知集合,,若“”是“”的充分不必要條件,求實數(shù)a的取值范圍.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】,所以,則,故選B2、A【解析】由題意可得:本題選擇A選項.3、D【解析】直接由二倍角的余弦公式,即可得解.【詳解】由二倍角公式得:,故選D.【點睛】本題考查了二倍角的余弦公式,屬于基礎題.4、A【解析】先通過觀察圖像可得A和周期,根據(jù)周期公式可求出,再代入最高點坐標可得.【詳解】由圖像得,,則,,,得,又,.故選:A.5、A【解析】直接利用交集的運算法則化簡求解即可【詳解】集合,,則,故選A【點睛】研究集合問題,一定要抓住元素,看元素應滿足的屬性.研究兩集合的關系時,關鍵是將兩集合的關系轉(zhuǎn)化為元素間的關系,本題實質(zhì)求滿足屬于集合且屬于集合的元素的集合.6、C【解析】利用函數(shù)的奇偶性以及已知條件轉(zhuǎn)化求解即可【詳解】函數(shù)g(x)=ax3+btanx是奇函數(shù),且,因為函數(shù)f(x)=ax3+btanx+6(a,b∈R),且,可得=﹣3,則=﹣g()+6=3+6=9故選C【點睛】本題考查函數(shù)的奇偶性的應用,函數(shù)值的求法,考查計算能力.已知函數(shù)解析式求函數(shù)值,可以直接將變量直接代入解析式從而得到函數(shù)值,直接代入較為繁瑣的題目,可以考慮函數(shù)的奇偶性的應用,利用部分具有奇偶性的特點進行求解,就如這個題目.7、A【解析】先由三視圖得出該幾何體的直觀圖,結(jié)合題意求解即可.【詳解】由三視圖可知其直觀圖,該幾何體為四棱錐P-ABCD,最長的棱為PA,則最長的棱長為,故選A【點睛】本題主要考查幾何體的三視圖,屬于基礎題型.8、C【解析】先根據(jù)點在曲線上求出,然后根據(jù)即可求得的值【詳解】點在曲線上,可得:化簡可得:可得:()解得:()若葫蘆曲線上一點到軸的距離為,則等價于則有:可得:故選:C9、A【解析】根據(jù)誘導公式以及倍角公式求解即可.【詳解】原式.故選:A10、D【解析】設冪函數(shù)為y=xa,把點(2,)代入,求出a的值,從而得到冪函數(shù)的方程,再判斷冪函數(shù)的單調(diào)遞增區(qū)間.【詳解】設y=xa,則=2a,解得a=-2,∴y=x-2其單調(diào)遞增區(qū)間為(-∞,0)故選D.【點睛】本題考查了通過待定系數(shù)法求冪函數(shù)的解析式,以及冪函數(shù)的主要性質(zhì).二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】解不等式確定集合,解方程確定集合,再由交集定義求得交集后可得結(jié)論【詳解】由題意,,∴,只有1個元素故答案為:112、【解析】先求出的值域,再求出的值域,利用和得到不等式組求解即可.【詳解】因為,所以,故,即因為,依題意得,解得故答案為:.13、【解析】設與直線平行的直線,將點代入得.即所求方程為14、【解析】結(jié)合的單調(diào)性求得正確答案.【詳解】根據(jù)復合函數(shù)單調(diào)性同增異減可知:在區(qū)間上遞增,最小值為,最大值為,所以函數(shù)在區(qū)間上的值域是.故答案為:15、或【解析】對分和兩類情況,解指數(shù)冪方程和對數(shù)方程,即可求出結(jié)果.【詳解】當時,因為,所以,所以,經(jīng)檢驗,滿足題意;當時,因為,所以,即,所以,經(jīng)檢驗,滿足題意.故答案為:或16、①.②.【解析】若,則,然后分、兩種情況求出的值即可;畫出的圖象,若存在,滿足,則,其中,然后可得,然后可求出答案.【詳解】因為,所以若,則,當時,,解得,滿足當時,,解得,不滿足所以若,則的圖象如下:若存在,滿足,則,其中所以因為,所以,,所以故答案為:;三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2).【解析】(1)由,所以,從而得解;(2)由,所以的最小值即為的最小值,過點O作直線的垂線求垂足即可.【詳解】(1)證明:設點的坐標為則由,∴即動點在定直線上(2)由,所以即為所以最小值時,取到最小值.又點在直線上,所以此時直線的方程為,聯(lián)立直線解得點.18、(1)(2)【解析】(1)結(jié)合正弦函數(shù)性質(zhì),相鄰兩個零點之差為函數(shù)的半個周期,由此得,代入已知點坐標可求得,得解析式;(2)由圖象變換得,求出時的的值域,由屬于這個值域可得的范圍【詳解】(1)設的最小正周期為T,因為相鄰的兩個零點之差的絕對值為6,所以,所以.因為的圖象經(jīng)過點,所以,又因為,所以.所以.(2)由(1)可得.當時,,則.因為關于x的方程在上有解,所以,解得或.所以a的取值范圍為.【點睛】本題考查三角函數(shù)的圖象與性質(zhì),由圖象求解析式,可結(jié)合“五點法”中的五點求解.方程有解問題可由分離參數(shù)法轉(zhuǎn)化為求函數(shù)值域問題.19、【解析】由已知結(jié)合商數(shù)關系、平方關系求,根據(jù)的范圍及平方關系求,最后由結(jié)合差角余弦公式求值即可.【詳解】因為,所以,又,可得或,而,所以,由,且,解得,因為,,則,所以,所以.20、(1);(2);(3).【解析】(1)由函數(shù)為奇函數(shù)可得,即,整理得,可得,解得,經(jīng)驗證不合題意.(2)根據(jù)單調(diào)性的定義可證明函數(shù)在區(qū)間上為增函數(shù),從而可得在區(qū)間上的值域為,故,從而可得所有上界構(gòu)成的集合為.(3)將問題轉(zhuǎn)化為在上恒成立,整理得在上恒成立,通過判斷函數(shù)的單調(diào)性求得即可得到結(jié)果試題解析:(1)∵函數(shù)是奇函數(shù),∴,即,∴,∴,解得,當時,,不合題意,舍去∴.(2)由(1)得,設,令,且,∵;∴在上是減函數(shù),∴在上是單調(diào)遞增函數(shù),∴在區(qū)間上是單調(diào)遞增,∴,即,∴在區(qū)間上的值域為,∴,故函數(shù)在區(qū)間上的所有上界構(gòu)成的集合為.(3)由題意知,上恒成立,∴,∴,因此在上恒成立,∴設,,,由知,設,則,,∴在上單調(diào)遞減,在上單調(diào)遞增,∴在上的最大值為,在上的最小值為,∴∴的取值范圍.點睛:(1)本題屬于新概念問題,解題的關鍵是要緊緊圍繞所給出

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論