版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
歷史因你而改變學(xué)習(xí)因你而精彩第十八章勾股定理18.1勾股定理(一)
星期日老師帶領(lǐng)八(3)全體學(xué)生去凌峰山風(fēng)景區(qū)游玩,同學(xué)們看到山勢(shì)險(xiǎn)峻,查看景區(qū)示意圖得知:凌峰山主峰高約為900米,如圖:為了方便游人,此景區(qū)從主峰A處向地面B處架了一條纜車線路,已知山底端C處與地面B處相距1200米,,請(qǐng)問纜車路線AB長(zhǎng)應(yīng)為多少?問題情境看一看相傳兩千五百年前,一次畢達(dá)哥拉斯去朋友家作客,發(fā)現(xiàn)朋友家用磚鋪成的地面反映直角三角形三邊的某種數(shù)量關(guān)系,同學(xué)們,我們也來(lái)觀察一下圖案,看看你能發(fā)現(xiàn)什么?
數(shù)學(xué)家畢達(dá)哥拉斯的發(fā)現(xiàn):A、B、C的面積有什么關(guān)系?直角三角形三邊有什么關(guān)系?SA+SB=SC兩直邊的平方和等于斜邊的平方ABCABCABC(圖中每個(gè)小方格代表一個(gè)單位面積)圖1圖2探究一:等腰直角三角形三邊關(guān)系A(chǔ)的面積(單位面積)B的面積(單位面積)C的面積(單位面積)圖1圖299ABCABC(圖中每個(gè)小方格代表一個(gè)單位面積)圖1圖2分“割”成若干個(gè)直角邊為整數(shù)的三角形(單位面積)ABCABC(圖中每個(gè)小方格代表一個(gè)單位面積)圖1圖2
SA+SB=SCA的面積(單位面積)B的面積(單位面積)C的面積(單位面積)圖19918圖2A、B、C面積關(guān)系直角三角形三邊關(guān)系448兩直角邊的平方和等于斜邊的平方ABC圖3ABC圖4分割成若干個(gè)直角邊為整數(shù)的三角形(單位面積)一般的直角三角形三邊關(guān)系探究二:ABCacbSA+SB=SC如果直角三角形的兩條直角邊長(zhǎng)分別是a、b,斜邊長(zhǎng)為c.猜想:兩直角邊a、b與斜邊c之間的關(guān)系?a2+b2=c2結(jié)論:直角三角形中,兩條直角邊的平方和,等于斜邊的平方.此結(jié)論被稱為“勾股定理”.在Rt△ABC中,∠C=900
,邊BC、AC、AB所對(duì)應(yīng)的邊分別為a、b、c則存在下列關(guān)系,結(jié)論:直角三角形中,兩條直角邊的平方和,等于斜邊的平方.a2+b2=c2勾股弦cabBCA如果直角三角形的兩直角邊分別為a,b,斜邊為c,那么a2+b2=c2.即直角三角形兩直角邊的平方和等于斜邊的平方.勾股定理∵∠C=90°∴a2+b2=c2cabBCA兩千多年前,古希臘有個(gè)哥拉斯學(xué)派,他們首先發(fā)現(xiàn)了勾股定理,因此在國(guó)外人們通常稱勾股定理為畢達(dá)哥拉斯年希臘曾經(jīng)發(fā)行了一枚紀(jì)念票。定理。為了紀(jì)念畢達(dá)哥拉斯學(xué)派,1955勾股世界國(guó)家之一。早在三千多年前,國(guó)家之一。早在三千多年前,國(guó)家之一。早在三千多年前,國(guó)家之一。早在三千多年前,國(guó)家之一。早在三千多年前,國(guó)家之一。早在三千多年前,國(guó)家之一。早在三千多年前,國(guó)家之一。早在三千多年前兩千多年前,古希臘有個(gè)畢達(dá)哥拉斯學(xué)派,他們發(fā)現(xiàn)了勾股定理,因此在國(guó)外人們通常稱勾股定理為畢達(dá)哥拉斯定理。為了紀(jì)念畢達(dá)哥拉斯學(xué)派,1955年希臘曾經(jīng)發(fā)行了一枚紀(jì)念郵票.我國(guó)是最早了解勾股定理的國(guó)家之一。早在三千多年前,周朝數(shù)學(xué)家商高就提出,將一根直尺折成一個(gè)直角,如果勾等于三,股等于四,那么弦就等于五,即“勾三、股四、弦五”,它被記載于我國(guó)古代著名的數(shù)學(xué)著作《周髀算經(jīng)》中.分析:已知△ABC中,,
AC=900米,BC=1200米,
求斜邊AB的長(zhǎng).
例1.星期日老師帶領(lǐng)八(3)全體學(xué)生去凌峰山風(fēng)景區(qū)游玩,同學(xué)們看到山勢(shì)險(xiǎn)峻,查看景區(qū)示意圖得知:凌峰山主峰高約為900米,如圖:為了方便游人,此景區(qū)從主峰A處向地面B處架了一條纜車線路,已知山底端C處與地面B處相距1200米,,請(qǐng)問纜車路線AB長(zhǎng)應(yīng)為多少?
勾股定理的運(yùn)用一已知直角三角形的任意兩條邊長(zhǎng),求第三條邊長(zhǎng).a2=c2-b2b2=c2-a2c2=a2+b2在直角三角形ABC中,∠C=900,∠A、∠B、∠C所對(duì)的邊分別為a、b、c
(1)
已知a=1,b=2,求c
(2)
已知a=10,c=15,求b小試牛刀ACBbac例2:將長(zhǎng)為5米的梯子AC斜靠在墻上,BC長(zhǎng)為2米,求梯子上端A到墻的底端B的距離.CAB解:在Rt△ABC中,∠ABC=90°∵BC=2,AC=5
∴AB2=AC2-BC2=52-22=21∴
AB=(米)(舍去負(fù)值)做一做:
P62540026xP的面積=______________X=_________225BACAB=__________AC=__________BC=__________251520求下列圖中表示邊的未知數(shù)x、y、z的值.①81144xyz②③做一做625576144169X=15Y=5Z=7比一比看誰(shuí)算得又快又準(zhǔn)!求下列直角三角形中未知邊的長(zhǎng)x:可用勾股定理建立方程.勾股定理運(yùn)用二:8x171620x125x做一做X=15X=12X=131、本節(jié)課我們經(jīng)歷了怎樣的過程?
經(jīng)歷了從實(shí)際問題引入數(shù)學(xué)問題然后發(fā)現(xiàn)定理,再到探索定理,最后學(xué)會(huì)驗(yàn)證定理及應(yīng)用定理解決實(shí)際問題的過程.2、本節(jié)課我們學(xué)到了什么?
通過本節(jié)課的學(xué)習(xí)我
溫馨提示
- 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度板材行業(yè)環(huán)保認(rèn)證與評(píng)估合同3篇
- 2025年度毛紗產(chǎn)品售后服務(wù)及維修合同4篇
- 2025年度個(gè)人房產(chǎn)買賣及裝修工程管理協(xié)議4篇
- 2025年度二零二五年度環(huán)保產(chǎn)業(yè)供應(yīng)鏈融資保理合同4篇
- 2025年度個(gè)人教育貸款借條4篇
- 2025年度毛石擋土墻施工期施工安全管理與教育培訓(xùn)合同4篇
- 2025年度海洋運(yùn)輸船員勞動(dòng)合同書3篇
- 2024綜合服務(wù)外包合同標(biāo)準(zhǔn)文本版B版
- 2025年度智能車間租賃安全協(xié)議書規(guī)范文本4篇
- 2024黎塘售樓部裝修合同
- 土地買賣合同參考模板
- 新能源行業(yè)市場(chǎng)分析報(bào)告
- 2022年7月2日江蘇事業(yè)單位統(tǒng)考《綜合知識(shí)和能力素質(zhì)》(管理崗)
- 初一英語(yǔ)語(yǔ)法練習(xí)
- 房地產(chǎn)運(yùn)營(yíng)管理:提升項(xiàng)目品質(zhì)
- 你劃我猜游戲【共159張課件】
- 專升本英語(yǔ)閱讀理解50篇
- 中餐烹飪技法大全
- 新型電力系統(tǒng)研究
- 滋補(bǔ)類用藥的培訓(xùn)
- 北師大版高三數(shù)學(xué)選修4-6初等數(shù)論初步全冊(cè)課件【完整版】
評(píng)論
0/150
提交評(píng)論