




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年天津市河東區(qū)高三一輪復習一測數學試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.ΔABC中,如果lgcosA=lgsinA.等邊三角形 B.直角三角形 C.等腰三角形 D.等腰直角三角形2.已知函數,則下列結論錯誤的是()A.函數的最小正周期為πB.函數的圖象關于點對稱C.函數在上單調遞增D.函數的圖象可由的圖象向左平移個單位長度得到3.一個頻率分布表(樣本容量為)不小心被損壞了一部分,只記得樣本中數據在上的頻率為,則估計樣本在、內的數據個數共有()A. B. C. D.4.已知盒中有3個紅球,3個黃球,3個白球,且每種顏色的三個球均按,,編號,現從中摸出3個球(除顏色與編號外球沒有區(qū)別),則恰好不同時包含字母,,的概率為()A. B. C. D.5.某醫(yī)院擬派2名內科醫(yī)生、3名外科醫(yī)生和3名護士共8人組成兩個醫(yī)療分隊,平均分到甲、乙兩個村進行義務巡診,其中每個分隊都必須有內科醫(yī)生、外科醫(yī)生和護士,則不同的分配方案有A.72種 B.36種 C.24種 D.18種6.已知函數的零點為m,若存在實數n使且,則實數a的取值范圍是()A. B. C. D.7.若函數為自然對數的底數)在區(qū)間上不是單調函數,則實數的取值范圍是()A. B. C. D.8.已知復數滿足,其中是虛數單位,則復數在復平面中對應的點到原點的距離為()A. B. C. D.9.已知復數滿足:(為虛數單位),則()A. B. C. D.10.函數的大致圖象為A. B.C. D.11.已知函數,,若成立,則的最小值是()A. B. C. D.12.已知直線y=k(x+1)(k>0)與拋物線C相交于A,B兩點,F為C的焦點,若|FA|=2|FB|,則|FA|=()A.1 B.2 C.3 D.4二、填空題:本題共4小題,每小題5分,共20分。13.已知函數,曲線與直線相交,若存在相鄰兩個交點間的距離為,則可取到的最大值為__________.14.在各項均為正數的等比數列中,,且,成等差數列,則___________.15.若函數(R,)滿足,且的最小值等于,則ω的值為___________.16.正方形的邊長為2,圓內切于正方形,為圓的一條動直徑,點為正方形邊界上任一點,則的取值范圍是______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標系中,以原點為極點,x軸正半軸為極軸建立極坐標系,并在兩坐標系中取相同的長度單位.已知曲線C的極坐標方程為ρ=2cosθ,直線l的參數方程為(t為參數,α為直線的傾斜角).(1)寫出直線l的普通方程和曲線C的直角坐標方程;(2)若直線l與曲線C有唯一的公共點,求角α的大小.18.(12分)已知,.(1)求函數的單調遞增區(qū)間;(2)的三個內角、、所對邊分別為、、,若且,求面積的取值范圍.19.(12分)已知是遞增的等比數列,,且、、成等差數列.(Ⅰ)求數列的通項公式;(Ⅱ)設,,求數列的前項和.20.(12分)已知是等腰直角三角形,.分別為的中點,沿將折起,得到如圖所示的四棱錐.(Ⅰ)求證:平面平面.(Ⅱ)當三棱錐的體積取最大值時,求平面與平面所成角的正弦值.21.(12分)已知動圓Q經過定點,且與定直線相切(其中a為常數,且).記動圓圓心Q的軌跡為曲線C.(1)求C的方程,并說明C是什么曲線?(2)設點P的坐標為,過點P作曲線C的切線,切點為A,若過點P的直線m與曲線C交于M,N兩點,則是否存在直線m,使得?若存在,求出直線m斜率的取值范圍;若不存在,請說明理由.22.(10分)已知函數,其中.(1)函數在處的切線與直線垂直,求實數的值;(2)若函數在定義域上有兩個極值點,且.①求實數的取值范圍;②求證:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】
化簡得lgcosA=lgsinCsinB=﹣lg2,即cosA=sinCsinB=12,結合0<A<π,可求A=π【詳解】由lgcosA=lgsinC-lgsinB=-lg2,可得lgcosA=∵0<A<π,∴A=π3,B+C=2π3,∴sinC=12sinB=12sin2π3-C=34cosC+故選:B【點睛】本題主要考查了對數的運算性質的應用,兩角差的正弦公式的應用,解題的關鍵是靈活利用基本公式,屬于基礎題.2.D【解析】
由可判斷選項A;當時,可判斷選項B;利用整體換元法可判斷選項C;可判斷選項D.【詳解】由題知,最小正周期,所以A正確;當時,,所以B正確;當時,,所以C正確;由的圖象向左平移個單位,得,所以D錯誤.故選:D.【點睛】本題考查余弦型函數的性質,涉及到周期性、對稱性、單調性以及圖象變換后的解析式等知識,是一道中檔題.3.B【解析】
計算出樣本在的數據個數,再減去樣本在的數據個數即可得出結果.【詳解】由題意可知,樣本在的數據個數為,樣本在的數據個數為,因此,樣本在、內的數據個數為.故選:B.【點睛】本題考查利用頻數分布表計算頻數,要理解頻數、樣本容量與頻率三者之間的關系,考查計算能力,屬于基礎題.4.B【解析】
首先求出基本事件總數,則事件“恰好不同時包含字母,,”的對立事件為“取出的3個球的編號恰好為字母,,”,記事件“恰好不同時包含字母,,”為,利用對立事件的概率公式計算可得;【詳解】解:從9個球中摸出3個球,則基本事件總數為(個),則事件“恰好不同時包含字母,,”的對立事件為“取出的3個球的編號恰好為字母,,”記事件“恰好不同時包含字母,,”為,則.故選:B【點睛】本題考查了古典概型及其概率計算公式,考查了排列組合的知識,解答的關鍵在于正確理解題意,屬于基礎題.5.B【解析】
根據條件2名內科醫(yī)生,每個村一名,3名外科醫(yī)生和3名護士,平均分成兩組,則分1名外科,2名護士和2名外科醫(yī)生和1名護士,根據排列組合進行計算即可.【詳解】2名內科醫(yī)生,每個村一名,有2種方法,3名外科醫(yī)生和3名護士,平均分成兩組,要求外科醫(yī)生和護士都有,則分1名外科,2名護士和2名外科醫(yī)生和1名護士,若甲村有1外科,2名護士,則有C3若甲村有2外科,1名護士,則有C3則總共的分配方案為2×(9+9)=2×18=36種,故選:B.【點睛】本題主要考查了分組分配問題,解決這類問題的關鍵是先分組再分配,屬于??碱}型.6.D【解析】
易知單調遞增,由可得唯一零點,通過已知可求得,則問題轉化為使方程在區(qū)間上有解,化簡可得,借助對號函數即可解得實數a的取值范圍.【詳解】易知函數單調遞增且有惟一的零點為,所以,∴,問題轉化為:使方程在區(qū)間上有解,即在區(qū)間上有解,而根據“對勾函數”可知函數在區(qū)間的值域為,∴.故選D.【點睛】本題考查了函數的零點問題,考查了方程有解問題,分離參數法及構造函數法的應用,考查了利用“對勾函數”求參數取值范圍問題,難度較難.7.B【解析】
求得的導函數,由此構造函數,根據題意可知在上有變號零點.由此令,利用分離常數法結合換元法,求得的取值范圍.【詳解】,設,要使在區(qū)間上不是單調函數,即在上有變號零點,令,則,令,則問題即在上有零點,由于在上遞增,所以的取值范圍是.故選:B【點睛】本小題主要考查利用導數研究函數的單調性,考查方程零點問題的求解策略,考查化歸與轉化的數學思想方法,屬于中檔題.8.B【解析】
利用復數的除法運算化簡z,復數在復平面中對應的點到原點的距離為利用模長公式即得解.【詳解】由題意知復數在復平面中對應的點到原點的距離為故選:B【點睛】本題考查了復數的除法運算,模長公式和幾何意義,考查了學生概念理解,數學運算,數形結合的能力,屬于基礎題.9.A【解析】
利用復數的乘法、除法運算求出,再根據共軛復數的概念即可求解.【詳解】由,則,所以.故選:A【點睛】本題考查了復數的四則運算、共軛復數的概念,屬于基礎題.10.A【解析】
因為,所以函數是偶函數,排除B、D,又,排除C,故選A.11.A【解析】分析:設,則,把用表示,然后令,由導數求得的最小值.詳解:設,則,,,∴,令,則,,∴是上的增函數,又,∴當時,,當時,,即在上單調遞減,在上單調遞增,是極小值也是最小值,,∴的最小值是.故選A.點睛:本題易錯選B,利用導數法求函數的最值,解題時學生可能不會將其中求的最小值問題,通過構造新函數,轉化為求函數的最小值問題,另外通過二次求導,確定函數的單調區(qū)間也很容易出錯.12.C【解析】
方法一:設,利用拋物線的定義判斷出是的中點,結合等腰三角形的性質求得點的橫坐標,根據拋物線的定義求得,進而求得.方法二:設出兩點的橫坐標,由拋物線的定義,結合求得的關系式,聯(lián)立直線的方程和拋物線方程,寫出韋達定理,由此求得,進而求得.【詳解】方法一:由題意得拋物線的準線方程為,直線恒過定點,過分別作于,于,連接,由,則,所以點為的中點,又點是的中點,則,所以,又所以由等腰三角形三線合一得點的橫坐標為,所以,所以.方法二:拋物線的準線方程為,直線由題意設兩點橫坐標分別為,則由拋物線定義得又①②由①②得.故選:C【點睛】本小題主要考查拋物線的定義,考查直線和拋物線的位置關系,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.4【解析】
由于曲線與直線相交,存在相鄰兩個交點間的距離為,所以函數的周期,可得到的取值范圍,再由解出的兩類不同的值,然后列方程求出,再結合的取值范圍可得的最大值.【詳解】,可得,由,則或,即或,由題意得,所以,則或,所以可取到的最大值為4.故答案為:4【點睛】此題考查正弦函數的圖像和性質的應用及三角方程的求解,熟練應用三角函數的圖像和性質是解題的關鍵,考查了推理能力和計算能力,屬于中檔題.14.【解析】
利用等差中項的性質和等比數列通項公式得到關于的方程,解方程求出代入等比數列通項公式即可.【詳解】因為,成等差數列,所以,由等比數列通項公式得,,所以,解得或,因為,所以,所以等比數列的通項公式為.故答案為:【點睛】本題考查等差中項的性質和等比數列通項公式;考查運算求解能力和知識綜合運用能力;熟練掌握等差中項和等比數列通項公式是求解本題的關鍵;屬于中檔題.15.1【解析】
利用輔助角公式化簡可得,由題可分析的最小值等于表示相鄰的一個對稱中心與一個對稱軸的距離為,進而求解即可.【詳解】由題,,因為,,且的最小值等于,即相鄰的一個對稱中心與一個對稱軸的距離為,所以,即,所以,故答案為:1【點睛】本題考查正弦型函數的對稱性的應用,考查三角函數的化簡.16.【解析】
根據向量關系表示,只需求出的取值范圍即可得解.【詳解】由題可得:,故答案為:【點睛】此題考查求平面向量數量積的取值范圍,涉及基本運算,關鍵在于恰當地對向量進行轉換,便于計算解題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)當時,直線l方程為x=-1;當時,直線l方程為y=(x+1)tanα;x2+y2=2x(2)或.【解析】
(1)對直線l的傾斜角分類討論,消去參數即可求出其普通方程;由,即可求出曲線C的直角坐標方程;(2)將直線l的參數方程代入曲線C的直角坐標方程,根據條件Δ=0,即可求解.【詳解】(1)當時,直線l的普通方程為x=-1;當時,消去參數得直線l的普通方程為y=(x+1)tanα.由ρ=2cosθ,得ρ2=2ρcosθ,所以x2+y2=2x,即為曲線C的直角坐標方程.(2)把x=-1+tcosα,y=tsinα代入x2+y2=2x,整理得t2-4tcosα+3=0.由Δ=16cos2α-12=0,得cos2α=,所以cosα=或cosα=,故直線l的傾斜角α為或.【點睛】本題考查參數方程化普通方程,極坐標方程化直角坐標方程,考查直線與曲線的關系,屬于中檔題.18.(1);(2).【解析】
(1)利用三角恒等變換思想化簡函數的解析式為,然后解不等式,可求得函數的單調遞增區(qū)間;(2)由求得,利用余弦定理結合基本不等式求出的取值范圍,再結合三角形的面積公式可求得面積的取值范圍.【詳解】(1),解不等式,解得.因此,函數的單調遞增區(qū)間為;(2)由題意,則,,,,解得.由余弦定理得,又,,當且僅當時取等號,所以,的面積.【點睛】本題考查正弦型函數單調區(qū)間的求解,同時也考查了三角形面積取值范圍的計算,涉及余弦定理和基本不等式的應用,考查計算能力,屬于中等題.19.(Ⅰ);(Ⅱ).【解析】
(Ⅰ)設等比數列的公比為,根據題中條件求出的值,結合等比數列的通項公式可得出數列的通項公式;(Ⅱ)求得,然后利用裂項相消法可求得.【詳解】(Ⅰ)設數列的公比為,由題意及,知.、、成等差數列成等差數列,,,即,解得或(舍去),.數列的通項公式為;(Ⅱ),.【點睛】本題考查等比數列通項的求解,同時也考查了裂項求和法,考查計算能力,屬于基礎題.20.(Ⅰ)見解析.(Ⅱ).【解析】
(I)證明平面得出平面,根據面面垂直的判定定理得到結論;(II)當平面時,棱錐體積最大,建立空間坐標系,計算兩平面的法向量,計算法向量的夾角得出答案.【詳解】(I)證明:分別為的中點,,又平面平面,又平面平面平面(II),為定值當平面時,三棱錐的體積取最大值以為原點,以為坐標軸建立空間直角坐標系則,設平面的法向量為,則即,令可得平面是平面的一個法向量平面與平面所成角的正弦值為【點睛】本題考查了面面垂直的判定,二面角的計算,關鍵是能夠根據體積的最值確定垂直關系,從而可以建立起空間直角坐標系,利用空間向量法求得二面角,屬于中檔題.21.(1),拋物線;(2)存在,.【解析】
(1)設,易得,化簡即得;(2)利用導數幾何意義可得,要使,只需.聯(lián)立直線m與拋物線方程,利用根與系數的關系即可解決.【詳解】(1)設,由題意,得,化簡得,所以動圓圓心Q的軌跡方程為,它是以F為焦點,以直線l為準線的拋物線.(2)不妨設.因為,所以,從而直線PA的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 法學概論考試創(chuàng)新思維訓練與試題及答案
- 軟件測試的標準和流程試題及答案
- VB編程趣味題試題及答案
- 2025年中國金花傷風糖漿市場調查研究報告
- 軟考網絡管理員應掌握的技能試題及答案
- 伏旱地理試題及答案
- 法理學的研究方法與應用試題及答案
- 復雜性與不確定性下的企業(yè)戰(zhàn)略思考與風險管理試題及答案
- 食品翻譯四級考試試題及答案
- 宿管老師應聘考試試題及答案
- 委托尋找房源協(xié)議書
- 建設項目全過程工程咨詢-第一次形成性考核-國開(SC)-參考資料
- 2024建安杯信息通信建設行業(yè)安全競賽題庫(試題含答案)
- (正式版)JBT 14581-2024 閥門用彈簧蓄能密封圈
- 2024年教師選調進城考試試題(小學語文)含答案
- (通用版)漢字聽寫大會競賽題庫及答案
- IE產能設備資源計劃表
- 4M1E基礎知識培訓.課件
- 一切才剛剛開始——校長在高考20天沖刺動員大會上的講話
- 波浪理論基礎要點圖解[精]
- 關于磷化行業(yè)企業(yè)建設項目及污染排放有關問題法律適用的復函
評論
0/150
提交評論