




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
計算方法第1頁共1頁《計算方法》課程綜合復習資料一、單選題1.已知有3位有效數(shù)字,則方程的具有三位有效數(shù)字的較小根為()。A.0.0627B.0.06C.15.94D.0.063答案:A解析:=0.062735262.用對分法求方程在區(qū)間上的根,若給定誤差限,則計算對分次數(shù)的公式是()。A.B.C.D.答案:D解析:()3.已知,且都已知,現(xiàn)建立遞推公式如下,則在數(shù)值計算中()。A.都穩(wěn)定B.公式(1)穩(wěn)定C.公式(2)穩(wěn)定D.都不穩(wěn)定答案:C4.x=1.234有3位有效數(shù)字,則相對誤差限()。A.0.5*10-1B.0.5*10-2C.0.5*10-3D.0.1*10-2答案:B5.近似值a=4.7860,則a2的誤差限為()。A.B.C.D.答案:C解析:6.若誤差限為,那么近似數(shù)0.003400有()位有效數(shù)字A.2B.3C.4D.6答案:B解析:由誤差限可知有效位為小數(shù)點后5位,因此有3位有效數(shù)字7.計算,取,利用下列算式計算,()得到的結果最好。A.B.C.D.答案:C解析:f(x)-f(x*)用f‘(x)(x-x*)來近似計算誤差,r1=-6*(1.4+1)^(-7)=0.01308195r2=3*(3-2*1.4)^2*2=0.24;r3=-3*(3+2*1.4)^(-4)*2=-0.005301995r4=-708.已知自然數(shù)e=2.718281828459045...,取e≈2.71828,那么e具有的有效數(shù)字是()。A.5位B.6位C.7位D.8位答案:B解析:四舍五入得到的最后一位有效。9.設方程的根的迭代格式為,且在區(qū)間上具有連續(xù)的一階導數(shù),,則滿足()時迭代收斂。A.B.C.D.答案:C10.已知方程,則計算的Newton迭代格式為()。A.B.C.D.答案:D二、填空題1.要使的近似值的相對誤差小于,要?。ǎ┪挥行?shù)字。答案:32.近似數(shù)x=0.231關于真值x=0.229有()位有效數(shù)字。答案:23.近似數(shù)是經四舍五入得到的,則它有5位有效數(shù)字,絕對誤差限為()。答案:4.近似數(shù)關于真值有4位有效數(shù)字,絕對誤差限為()。答案:5.用牛頓法解方程的根,其牛頓迭代公式為()。答案:6.用牛頓法解方程的根,其牛頓迭代公式為(),其收斂速度是對于單根收斂速度是二次的,即平方收斂。答案:7.解非線性方程f(x)=0的牛頓迭代法具有()收斂。答案:局部平方收斂8.用二分法求方程在區(qū)間內的實根,若誤差限取,則對分次數(shù)至少為()。答案:59.給定方程組,則解此方程組的迭代公式為()。答案:10.給定方程組,則解此方程組的迭代公式為()。答案:11.設,則()。答案:12.設,則()。答案:113.高斯消去法能進行到底的充分必要條件為系數(shù)矩陣A的各階順序主子式()。答案:不為零14.設,則()。答案:015.插值數(shù)據(jù)為的插值多項式()。答案:16.計算的辛浦生公式為()。答案:17.辛浦生求積公式的代數(shù)精度為()。答案:318.辛浦生求積公式的代數(shù)精度為()。答案:319.已知有5位有效數(shù)字,則方程的具有5位有效數(shù)字的較小的根為()。答案:0.03851920.求解常微分方程初值問題的預報校正公式為()。答案:21.求解常微分方程初值問題的四階龍格—庫塔公式的局部截斷誤差為()。答案:22.給定方程組,則解此方程組的迭代公式為()。答案:23.給定方程組,則解此方程組的迭代公式為()。答案:24.求解常微分方程初值問題的改進的歐拉法的局部截斷誤差為()。答案:25.n個求積節(jié)點的插值型求積公式的代數(shù)精度至少為()次。答案:n-1三、綜合題1.已知下列函數(shù)表,(1)寫出相應的三次Lagrange插值多項式;(2)作均差表,寫出相應的三次Newton插值多項式。00.511.5-2-1.75-10.25答案:(1)或(2)構造差商表2.已知方程組,其中,,寫出該方程組的Jacobi迭代法和Gauss-Seidel迭代法的分量形式,并說明它們的收斂性。答案:Jacobi迭代法的分量形式Gauss-Seidel迭代法分量形式因為系數(shù)矩陣是嚴格對角占優(yōu)的,所以雅可比迭代格式和高斯-賽德爾迭代格式均收斂。3.已知方程組,其中,(1)寫出該方程組的Jacobi迭代法和Gauss-Seidel迭代法的分量形式,說明它們的收斂性;(2)取初值用迭代法計算兩步得到。答案:系數(shù)矩陣使嚴格對角占優(yōu)的,其迭代和迭代都是收斂的。迭代格式為迭代格式為計算結果為4.求如下矛盾方程組的最小二乘解。答案:最小二乘解滿足的正規(guī)方程組為,計算知,,正規(guī)方程組為其解為,或5.已知方程組,其中,,寫出該方程組的Jacobi迭代法和Gauss
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 車輛雙方維修協(xié)議書模板
- 進口水產批發(fā)合同協(xié)議
- 氫氣安全協(xié)議書
- 物權購買協(xié)議書
- 轉委托協(xié)議書范本
- 酒店培訓系統(tǒng)學習
- 進口液壓油采購合同協(xié)議
- 畢業(yè)閨蜜協(xié)議書
- 實習生用人合同協(xié)議書
- 建設工程個人勞務分包合同
- 2025年北京市水務局所屬事業(yè)單位招聘工作人員101人筆試高頻重點提升(共500題)附帶答案詳解
- 2025屆貴州省遵義第四中學高考語文全真模擬密押卷含解析
- 【MOOC】創(chuàng)業(yè)基礎-暨南大學 中國大學慕課MOOC答案
- 中建專項施工電梯專項施工方案
- 全國各省市一覽表
- 餐飲的勞務合同(2篇)
- 山東省濰坊市2023-2024學年高二下學期期末考試 歷史 含解析
- 2024-2025學年中職歷史世界歷史高教版(2023)教學設計合集
- 阿里云:云上數(shù)字政府之:政務云統(tǒng)籌運營建設指南
- 鴿巢問題-公開課教案教學設計課件案例試卷題
- 《磷污染的物化處理》筆記
評論
0/150
提交評論