




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
遼寧省名校聯(lián)合體2024?2025學(xué)年高二上學(xué)期期中檢測數(shù)學(xué)試題一、單選題(本大題共8小題)1.已知向量,則的值為(
)A. B.14 C. D.42.點關(guān)于平面對稱的點的坐標(biāo)是(
)A. B. C. D.3.已知圓,圓,則這兩圓的位置關(guān)系為()A.內(nèi)含 B.相切 C.相交 D.外離4.兩平行直線:,:之間的距離為(
)A. B.3 C. D.5.已知點,且四邊形是平行四邊形,則點的坐標(biāo)為(
)A. B.C. D.6.已知方程表示一個焦點在軸上的橢圓,則實數(shù)的取值范圍為(
)A. B. C. D.7.在直三棱柱中,,,,則直線與平面所成角的余弦值為(
)A. B. C. D.8.在空間直角坐標(biāo)系中,已知,則點A到直線的距離為(
)A. B. C. D.二、多選題(本大題共3小題)9.向量,若,則(
)A. B.C. D.10.如圖所示,在棱長為2的正方體中,,分別為棱和的中點,則以為原點,所在直線為、、軸建立空間直角坐標(biāo)系,則下列結(jié)論正確的是(
)A.平面B.C.是平面的一個法向量D.點到平面的距離為11.已知橢圓的左、右焦點分別為,點,點是橢圓上的一個動點,則(
)A.B.C.當(dāng)點不在軸上時,從點向軸作垂線,為垂足,則線段的中點的軌跡方程為D.的最大值為三、填空題(本大題共3小題)12.兩平面的法向量分別為,則兩平面的夾角為.13.在空間直角坐標(biāo)系中,點在平面內(nèi),且,為平面內(nèi)任意一點,則.14.在平面直角坐標(biāo)系中,軸被圓心為的圓截得的弦長為,直線:與圓相交于,兩點,點在直線上,且,那么圓的方程為,的取值范圍為.四、解答題(本大題共5小題)15.求符合下列條件的直線的方程:(1)過點,且斜率為;(2)過點,;(3)過點且在兩坐標(biāo)軸上的截距相等.16.如圖,在直三棱柱中,,點分別為棱的中點.(1)求證:平面;(2)求直線與直線的夾角的余弦值.17.已知圓C過點,,且圓心C在直線上.(1)求圓C的標(biāo)準(zhǔn)方程;(2)過點的直線l與圓C相切,求直線l的方程.18.已知橢圓C:的短軸長和焦距相等,長軸長是.(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)直線l與橢圓C相交于P,Q兩點,原點O到直線l的距離為.點M在橢圓C上,且滿足,求直線l的方程.19.如圖,在直棱柱中,底面是邊長為2的菱形,,.點是線段上的動點(不含端點).(1)當(dāng)時,求的值;(2)求平面與平面所成銳二面角的余弦值的取值范圍.
參考答案1.【答案】B【詳解】.故選:B2.【答案】B【詳解】點關(guān)于平面對稱的點的坐標(biāo)是.故選:B3.【答案】A【詳解】圓的圓心為,半徑;圓的圓心為,半徑,則,故,所以兩圓內(nèi)含;故選:A4.【答案】A【詳解】由題意得:直線,,,,兩直線為平行直線,直線,兩平行直線之間的距離為.故選A.5.【答案】A【詳解】設(shè)設(shè)點D的坐標(biāo)為,由題意得,因為四邊形是平行四邊形,所以,所以,解得,故選:A6.【答案】B【分析】由橢圓的簡單幾何性質(zhì)即可求解.【詳解】因為方程表示一個焦點在軸上的橢圓,所以有,解得,所以實數(shù)的取值范圍為,故選B.7.【答案】D【詳解】因為三棱柱是直三棱柱,且,所以以B為原點、AB所在直線為x軸、BC所在直線為y軸、所在直線為z軸建立空間直角坐標(biāo)系,如圖所示.因為,所以,故.設(shè)為平面的一個法向量,則,令,得.設(shè)直線與平面,所成的角為,則,則.故選:D.8.【答案】A【詳解】,,.故選:A.9.【答案】BC【詳解】因為,所以,由題意可得,所以,則.故選:BC10.【答案】ACD【詳解】對于A,由于,分別是的中點,所以平面平面,所以平面,故A正確;對于B,,故,,故與不垂直,進(jìn)而可得與不垂直,故B錯誤;對于C,由,所以,設(shè)平面的法向量為,則,令,則,所以平面的一個法向量,故C正確;對于D,,點到平面的距離為,故D正確.故選:ACD.11.【答案】ABC【詳解】對于A,由橢圓方程得:F1-1,0,F(xiàn)21,0,,A正確;對于B,,,,B正確;對于C,設(shè),Mx,y,則,,即,,又在橢圓上,,即點軌跡為,C正確;對于D,由橢圓定義知:,,(當(dāng)且僅當(dāng)三點共線時取等號,即位于圖中點的位置時取等號),,D錯誤.故選:ABC.12.【答案】【詳解】解:兩平面的法向量分別為,設(shè)兩平面的夾角為,所以,因為,所以,即兩平面的夾角為.故答案為:.13.【答案】4【詳解】由題知,根據(jù)可知,是平面的一個法向量,則,所以,整理可得.故答案為:4.14.【答案】【詳解】設(shè)圓的標(biāo)準(zhǔn)方程為,因為軸被圓心為的圓截得的弦長為,所以,可得,所以圓的方程為;由直線與圓相交,有,解得或.由,,可得直線與直線垂直,有,有,解得,可得,又由或,,或,由反比例函數(shù)的性質(zhì)可得或,所以的取值范圍為,故答案為:;
15.【答案】(1);(2);(3)或.【詳解】(1)∵所求直線過點,且斜率為,∴,即;(2)∵所求直線過,,∴,∴,即;(3)當(dāng)直線過原點時,設(shè)直線方程為,∵直線過點,∴,直線方程為,即;當(dāng)直線不過原點時,設(shè)直線方程為,將點代入上式,得,解得,故直線的方程為,綜上,直線方程為或.16.【答案】(1)答案見解析(2)【分析】(1)先證,再由線線平行正線面平行即可;(2)由題意建系,求出相關(guān)點和向量的坐標(biāo),利用空間向量的夾角公式計算即得.【詳解】(1)因為是直三棱柱,則,又因為點分別為棱的中點,所以,則四邊形是平行四邊形,所以,又因為平面平面,故平面;(2)如圖,因為直三棱柱中,故可以為原點,以所在直線為軸,軸,軸建立空間直角坐標(biāo)系,不妨設(shè),則,于是,設(shè)直線與直線的夾角為,則,故直線與直線的夾角的余弦值為.17.【答案】(1);(2)或.【解析】(1)圓C過點,,且圓心C在直線上,可用待定系數(shù)法求圓的標(biāo)準(zhǔn)方程;(2)求圓的切線,分斜率存在和斜率不存在兩種情況討論.【詳解】解:(1)直線AB的斜率為,線段AB的中點坐標(biāo)為直線AB的垂直平分線的方程為,整理為聯(lián)立方程,解得由圓C的性質(zhì)可知,圓心C的坐標(biāo)為,可得圓C的半徑為故圓C的標(biāo)準(zhǔn)方程為(2)①當(dāng)直線l的斜率不存在時,直線正好與圓C相切,故此時直線l的方程為②當(dāng)直線l的斜率存在時,設(shè)直線l的方程為,整理為由直線l與圓C相切,有,解得可得直線l的方程為,整理為故直線l的方程為或.18.【答案】(1)(2)或或或【詳解】(1)設(shè)橢圓C的焦距為2c,由題意有,解得,,,故橢圓C的標(biāo)準(zhǔn)方程為;(2)若直線l的斜率不存在,直線l的方程為,此時滿足的點M顯然不在橢圓C上,可得直線l的斜率存在,設(shè)直線l的方程為,,,,聯(lián)立方程,消去y后整理為,可得,,由,可得,又由,可得,,將點M的坐標(biāo)代入橢圓C的方程,有,整理為,又由原點O到直線l的距離為,有,可得,聯(lián)立方程,可得,解得或或或,又由,可得直線l的方程為或或或.19.【答案】(1);(2).【詳解】解:(1)如圖,取中點,連接,,因為,,所以,在菱形中,,為中點,所以,因為,平面,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 新能源汽車名義股東合伙人股權(quán)融資協(xié)議
- 跨國公司海外職員背景調(diào)查與聘用合同
- 藝人音樂專輯發(fā)行經(jīng)紀(jì)合同
- 登記離婚共同財產(chǎn)分割及債務(wù)承擔(dān)補(bǔ)充協(xié)議
- 大學(xué)生社會實踐研學(xué)旅行項目合作協(xié)議
- 智能停車設(shè)備生產(chǎn)與區(qū)域市場拓展合作加盟協(xié)議
- 建筑工程項目油漆工派遣服務(wù)及施工變更通知協(xié)議
- 醫(yī)學(xué)影像護(hù)士進(jìn)修匯報
- 酒店客房衛(wèi)生間清潔流程
- 田徑規(guī)則培訓(xùn)綱要
- 發(fā)貨管理規(guī)范
- DL-T5554-2019電力系統(tǒng)無功補(bǔ)償及調(diào)壓設(shè)計技術(shù)導(dǎo)則
- 女生穿搭技巧智慧樹知到期末考試答案章節(jié)答案2024年南昌大學(xué)
- 大熊貓的介紹
- 正常肝臟CT解剖
- 英語國家商務(wù)國情 知到智慧樹網(wǎng)課答案
- 2024年廣西來賓高投發(fā)展集團(tuán)有限公司招聘筆試沖刺題(帶答案解析)
- 衛(wèi)生部婦產(chǎn)科診療規(guī)范及指南
- 正畸病例匯報模板
- 科學(xué)小實驗手搖發(fā)電機(jī)原理
- 中華民族共同體概論課件專家版10第十講 中外會通與中華民族鞏固壯大(明朝時期)
評論
0/150
提交評論